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3B.10: Radial flow of a Newtonian fluid between parallel disks (BLS, page 108) 

A part of a lubrication system consists of two circular disks between which a lubricant flows 

radially. The flow takes place because of a modified pressure difference (P1 − P2) between the inner 

and outer radii r1 and r2,respectively. 

Steady, laminar flow occurs in the space between two fixed parallel, circular disks separated by a 

small gap 2b. The fluid flows radially outward owing to a pressure difference (P1 − P2) between the 

inner and outer radii r1 and r2, respectively. Neglect end effects and consider the region r1 ≤ r ≤ r2 

only. Such a flow occurs when a lubricant flows in certain lubrication systems (It means high 

viscosity, and so low Reynolds number, Re~1). 

 

Figure. Radial flow between two parallel disks. 

a) Simplify the equation of continuity to show that r vr = f, where f is a function of only z.  

b) Simplify the equation of motion for incompressible flow of a Newtonian fluid of viscosity μ and 

density ρ.  

c) Obtain the velocity profile assuming creeping flow.  

d) Sketch the velocity profile vr (r, z) and the pressure profile P(r).  

e) Determine an expression for the mass flow rate by integrating the velocity profile.  

 

Solution 

Step. Simplification of continuity equation: 

Since the steady laminar flow is directed radially outward, only the radial velocity component vr 

exists. The tangential and axial components of velocity are zero; so, vθ = 0 and vz = 0.  

For incompressible flow, the continuity equation gives ∇.v = 0.  

In cylindrical coordinates,  
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On integrating the simplified continuity equation, r vr = f(θ, z). Since the solution is expected to be 

symmetric about the z-axis, there is no dependence on the angle θ. Thus, f is a function of z only 
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and not of r or θ. In other words, r vr = f(z). This is simply explained from the fact that mass (or 

volume, if density ρ is constant) is conserved; so, ρ (2 π r vr dz) = dw is constant (at a given z) and is 

independent of r. 

Step. For a Newtonian fluid, the Navier - Stokes equation is 
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   (2) 

 

in which P includes both the pressure and gravitational terms. On noting that vr = vr(r, z), its 

components for steady flow in cylindrical coordinates may be simplified as given below. 
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Θ - component : 

0  =   
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∂θ 

   (4) 

z - component : 
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   (5) 

Recall that r vr = f(z) from the continuity equation. Substituting vr = f / r and P = P(r) in equation 

(3) then gives 
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   (6) 

Equation (6) has no solution unless the nonlinear term (that is, the f 
2
 term on the left-hand side) is 

neglected. Under this 'creeping flow' assumption, equation (6) may be written as 
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   (7) 

The left-hand side of equation (7) is a function of r only, whereas the right-hand side is a function 

of z only. This is only possible if each side equals a constant (say, C0). Integration with respect to r 

from the inner radius r1 to the outer radius r2 then gives P2 − P1 = C0 ln (r2/r1). On replacing C0 in 

terms of f, 
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The above equation may be integrated twice with respect to z as follows. 
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  =   

− ΔP  

 
μ ln (r2/r1) 

z + C1 

   (9) 
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⇒       vr  =   

− ΔP  

 
2 μ r ln (r2/r1) 

 z
2
  +  C1 

z  

 
r 

  +   

C2  

 
r 

   (10) 

 

Here, ΔP ≡ P1 − P2. Equation (10) is valid in the region r1 ≤ r ≤ r2 and −b ≤ z ≤ b.  

Imposing the no-slip boundary conditions at the two stationary disk surfaces (vz = 0 at z = +b and 

any r) gives C1 = 0 and C2 = ΔP b
2
 / [2 μ ln (r2/r1)]. On substituting the integration constants in 

equation (10), the velocity profile is ultimately obtained as  
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   (11) 

 

Step. Sketch of velocity profile and pressure profile 

The velocity profile from equation (11) is observed to be parabolic for each value of r with vr,max = 

ΔP b
2
 / [2 μ r ln (r2/r1)]. The maximum velocity at z = 0 is thus inversely proportional to r. In 

general, it is observed from equation (11) that vr itself is inversely proportional to r. Sketches of 

vr(z) for different values of r and vr(r) for different values of |z| may be plotted.  

The pressure profile obtained by integrating the left-hand side of equation (7) is (P − P2) / (P1 − P2) 

= [ln(r/r2)] / [ln(r1/r2)]. A sketch of P(r) may be plotted which holds for all z.  

Step. Mass flow rate by integrating velocity profile 

The mass flow rate w is rigorously obtained by integrating the velocity profile using w = ∫ n . ρv dS, 

where n is the unit normal to the element of surface area dS and v is the fluid velocity vector. For 

the radial flow between parallel disks, n = δr , v = vrδr , and dS = 2πr dz. Then, substituting the 

velocity profile from equation (11) and integrating gives 
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