Unità di misura e terminologia fondamentale

Principi di Ingegneria Chimica Ambientale

Il sistema internazionale (SI)

Dimensione fondamentale	Unità nel sistema SI
Massa	Kilogrammo (Kg)
Lunghezza	metro (m)
Tempo	secondo (s)
Temperatura	Kelvin (K)

Il sistema internazionale (SI)

Prefisso	potenza di dieci	Simbolo
Peta	15	Р
Tera	12	Т
Giga	9	G
Mega	6	M
Kilo	3	K
etto	2	h
deca		da
deci	- I	d
centi	-2	С
milli	-3	m
micro	-6	μ
nano	-9	n
pico	-12	Р

Unità di misura fondamentali

la forza si misura in Newton (N)

$$1 N = 1 Kg m/s^2$$

• il lavoro, o energia, si misura in Joule (J)

$$1 J = 1 N m$$

la potenza si misura in Watt (W)

$$1 W = 1 J/s$$

Il sistema anglosassone

Grandezza	Unità	Simbolo	Valore
Lunghezza	pollice (inch)	in	2.54cm
	piede (foot)	ft	0.305m
Massa	libbra (pound)	Lb	0.454Kg
Forza	libbraforza (pound force)	Lbf	4.448N
Pressione	libbraforza per pollice quadro (poundforce per square inch)	PSI	6895Pa
Energia	British Thermal Unit	BTU	1055J
Potenza	Cavallo (horse power)	Нр	746W
Temperatura	Fahrenhit	°F	$T_K=5/9(T_F+459.67)$ $T_F=9/5T_K-459.67$

Altre unità di uso comune

Grandezza	Unità	Simbolo	Valore
Pressione	atmosfera	atm	1.10 10 ⁵ Pa
	torr	torr	I 33Pa=atm/760
	mm di mercurio	mmHg	l torr
	bar	bar	I0⁵Pa
Energia	caloria	cal	4.186J
Volume	litro	L	I 0 ⁻³ m ³
Energia	Kilowattora	KWh	3.6MJ

Il concetto di mole

La mole, o grammo-molecola, rappresenta un numero conveniente di molecole (o atomi). Tale numero è scelto in modo che il peso eguaglia il peso molecolare della sostanza espressa in grammi.

Tale numero è il numero di Avogadro:

 $Av=6.02 10^{23}$

Pesi molecolari da ricordare

elemento	simbolo	g/mole
Idrogeno	Н	1
Carbonio	С	12
Azoto	N	14
Ossigeno	О	16
Zolfo	S	32
Cloro	Cl	35.5
Sodio	Na	23
Aria		29

Definizioni di comune utilizzo

• la densità esprime il rapporto fra la massa di una sostanza e il volume in cui è contenuta

$$\rho = M/V[=] Kg/m^3$$

• il volume specifico è il suo inverso

$$v=M/V[=] Kg/m^3$$

• la gravità specifica è il rapporto tra la densità di una sostanza e una desità di riferimento (acqua a 4°C)

sp gr=
$$\rho/(1000 \text{Kg/m}^3)$$

Unità per esprimere una composizione

- frazione in massa: $w_i=M_i/M_{tot}$
- frazione in volume: $\phi_i = V_i/V_{tot}$
- frazione in moli: $x_i = n_i/n_{tot}$
- concentrazione (o molarità): $c_i = n_i/V_{tot}$
- parti per milione (ppm) o per miliardo (ppb):

per solidi e liquidi: è equivalente ad una frazione in peso (se non meglio specificato) e rappresenta una quantità pari a 1mg (o 1µg) di sostanza per litro di acqua o per Kg di solido o di liquido diverso dall'acqua

per i gas: è equivalente ad una frazione in volume (se non meglio specificato) e rappresenta una quantità pari a 1cm³ (o 1mm³) di sostanza per m³ di aria.

• pressione parziale (per i gas): pi=P yi (pressione totale per frazione molare)