Viscous Flow in Channels:
the continuity equation

In this chapter we shall deal with realistic situations in (x, y), where a
liquid locally is at rest with respect to the solid objects in contact with
it. Under such conditions curl(v) will in general be non-zero.

Classical mechanics applied to a liquid yields the Navier-Stokes
equation.  That equation expresses Newton’s law of motion
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for the total force f,,, on a fluid element that is carried along with the
stream. (That kind of derivative is also commonly denoted Dv/Dt.)
Here, p, is the constant mass density of the fluid. Since the velocity
in a chosen volume element is a function of (¢, x, y), we may write
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With this expression for the derivative, Newton’s law takes the form

p0%+p0(v-V)v—F+Vp—nV2V=O o

where F is an external force (e.g. gravity), —Vp the force due to

ressure, and nV>2v the one proportional to viscosity. This
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vector PDE 1s known as the Navier-Stokes (N-S) equation.
The second term, p,(v-V)v, has the dimension of force but it is

really part of the time derivative and hence called an inertial force.
This term is obviously second-order in v.
The last term corresponds to the viscous force on the volume

element. Normally, v? operates on a scalar and V?v should be taken
as shorthand for the vector (invx +j Vzvy).

The simplest case of flow occurs at such small speeds that the non-
linear inertial force become negligible compared to viscous force, and



here we shall consider liquid motion under such
conditions. The ratio of inertial-to-viscous forces is usually expressed
in the form of the dimensionless Reynolds number, defined by

Re = Povolo Y
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where v, is a typical speed and L, a typical size of the solution

domain. This number gives us an order-of-magnitude indication of
the sort of flow we are dealing with. At sufficiently small values of
Re, the inertial term is negligible compared to the viscous force and
the problem can be treated as linear in the dependent variables. The
PDEs then yield solutions corresponding to laminar flow.

Above the first critical value (Re=1) the solutions may remain
laminar, even if the PDEs are non-linear. Above a much higher value
(Re=100 or much more depending of the details of the problem) the
solution becomes turbulent and time-dependent (permanently
unstable).

In Cartesian coordinates, the component Navier-Stokes equations
may thus be written (for the x- and y-directions respectively)
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Here, we have kept the second term unexpanded, since it may be
disregarded until a later chapter.

So far, we have only two equations for the three dependent
variables v,, v,, and p. Conservation of mass at constant density

gives us a third equation,  1.e.
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but unfortunately this is a PDE of first order only, which FlexPDE
would not accept.



Using V-.v=0 together with the equation of motion we may,
however, generate a relation containing second-order derivatives in p.
Applying the divergence operator to the N-S equation we obtain

pO%V-V+,00V-[(V-V)V]—V-F+V2p— nV-(V*v)=0

where the first term vanishes because of mass conservation.
Furthermore, we may eliminate the last term using the identities

nV-(V?v) =V (V-v)=nV*(0)=0
The remainder of the modified N-S equation is
Vip+p, V- [(vVIV]-V-F=0 °

If the volume force F is constant in space the last term will vanish.
Expressed in Cartesian coordinates, this PDE takes the form
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Even in this equation we leave the term containing p, unexpanded,

since it will not be used in the present chapter.

We now have a total of three PDEs for calculating v_, v and p.
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Although we derived the equation for p using mass conservation, it
would be wrong to assume that any solution to these three PDEs
would necessarily satisfy V-v=0. In fact, one may show that this is
true only in special cases. We shall see that the first two examples in
this chapter are sufficiently simple for the divergence to vanish
automatically.

It could never be wrong, however, to add V -v, multiplied by a
factor, to the equation for p, since the divergence should vanish in the
final stage of the solution process. Hence we settle for the following
form
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where we may choose the factor f;, freely according to the problem
at hand, to ensure vanishing divergence. Trial runs lead us to employ



a negative factor. We may always verify by means of plots that the
divergence vanishes for a given solution.

The factor f;, may not be taken as a fixed number, however, since

it has a physical dimension, in fact the same as n/Lf). Hence, we
should write
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where the parameter L, 1s a typical size of the domain. The number C
1s to be chosen empirically, large enough to ensure vanishing V-v,
but not so large that it impairs convergence in FlexPDE calculations
or requires unreasonably long runtimes.

Although the divergence term was introduced on intuitive grounds
and proves itself in practical use, we may understand approximately
how it works. @ If the term f =—-Vp

IS the force generated by pressure, the  Gauss theorem yields

Jl[vepdv=||jv-vpav=-||Jv-tav=-ff,ds

Let us now consider a small region around a point of interest. By
subtracting a certain amount from the Vzp term in page3® we

effectively create an outward force on the boundary of that region,
which transports fluid away from the point considered. This nudges
the calculations toward vanishing divergence.

Boundary Conditions

Now that we have a PDE for pressure, we must find out what
boundary conditions to use with it. This is easy enough where the
pressure takes known values, but what about boundaries that just limit
the fluid flow?

The alternative to value 1s a natural statement. In the latter case we
need an expression for Jp/dn =n-Vp, where n is the outward

normal (‘n‘ =1) at the boundary of the domain. The N-S equation
(page 1) provides the answer rather directly :
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If the pressure is not known on a boundary segment, we may thus use
the following general expression for the natural boundary condition

oplon =n-Vp=n-F+77n-V2V—pon-%—pon-[(v-V)v]:
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where p,Jdv,/0t will vanish in the steady state, and we defer the
expansion of the last term until it is required later.

Steady Flow at Small Speeds (Re<<1)

In this chapter and the next one we shall only be concerned with
steady flow, which means that we omit the time derivative. We also
assume Re to be small enough to permit us to neglect the PDE term
proportional to the density. The three PDEs then take the simpler
form
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We shall soon see that in the most elementary examples, involving
parallel flow, we may even neglect the last (divergence) term.

For small Re, the natural boundary condition for pressure
simplifies into
op/dn =n.F, +n,F, + n(nxvzvx + nyvzvy) o




