Appendix B

The Fluxes and the Equations
of Change |

§B.1
§B.2
§B.3
§B.4
§B.5
§B.6
§B.7
§B.8
§B.9
§B.10
§B.11

Newton’s law of viscosity

Fourier’s law of heat conduction

Fick's (first) law of binary diffusion

The equation of continuity

The equation of motion in terms of 7

The equation of motion for a Newtonian fluid with constant p and
The dissipation function @, for Newtonian fluids

The equation of energy in terms of q

The equation of energy for pure Newtonian fluids with constant p and k
The equation of continuity for species « in terms of j,

The equation of continuity for species A in terms of w, for constant p@

§B.1 NEWTON’S LAW OF VISCOSITY

[t = —p(Vv + (V0 + G — k)(V - v)3]

Cartesian coordinates (x, y, z):

in which

v
T = — M 2z9—xx + Cu— k(Y - V)
[ _ov,]
Ty = —H ZW + Gu — k)(V-v)
v, |
Ty = K [;—ZZ + @M’ —k)(V - v)
_ _ —3Z)y avx—
Ty =T = TH Gy gy |
_ _ _avz t;'Uy_
Tyz - sz i W E
v, dv,
R P
_ v, y  dv,
V=t %

(B.1-1)"

(B.1-2)"

(B.1-3)

(B.1-4)

(B.1-5)

(B.1-6)

(B.1-7)

2 When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For
monatomic gases at low density, the dilatational viscosity « is zero.
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844 AppendixB Fluxes and the Equations of Change

§B.1 NEWTON'’S LAW OF VISCOSITY (continued)

Cylindrical coordinates (r, 0, z):

1 B

T =

] + (3;4, —k)(V-v)

B

)

’ B

] +CGu— k) V)

RY

r=7=—_‘7 +1av
e or /‘L ar r 90

1z7vz N
To: = T = "M 750 T oy

in which

V.v)= %

d 2
a—(rv)+ra0 t o

Top = — [ 1"”" v]+(3#—x)(v V)

(B.1-8)"

(B.1-9)"

(B.1-10)"

(B.1-11)

(B.1-12)

(B.1-13)

(B.1-14)

* When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For

monatomic gases at low density, the dilatational viscosity « is zero.

Spherical coordinates (r, 0, $):

[ o
Ty = TH ;:.:l + (3/“' = k)(V - v)

9
T = —pt 2(%% n )] +Cu— )V -V

[ 1 Yy ©v,+ v, coth s
=- — + +CGu - .
Toe M_z(r sin 0 d¢ r )] Gu = (V- V)
_ 3 197,
0 = f‘[ or (‘) i 7%]

gomg = _y,|sin0O( P ) 1 vy
o =T = "M 775 \sin 6) " 7 sin 0 9o

_ 1 9v _a_ Yy
Tor =T = "M T sin 9o | or\ T

1
v sin 0 36

in which

(V-v)= ai (r*v,) + (v,, sin 6) +

(B.1-15)"

(B.1-16)"

(B.1-17)"

(B.1-18)

(B.1-19)

(B.1-20)

(B.1-21)

* When the fluid is assumed to have constant density, the term containing (V * v) may be omitted. For

monatomic gases at low density, the dilatational viscosity « is zero.



§B.2

§B.2  Fourier's Law of Heat Conduction

FOURIER’S LAW OF HEAT CONDUCTION"

845

[q = —kVT]
Cartesian coordinates (x, y, z):
= 9T -
g.= —k % (B.2-1)
aT
ql/ —k @ (B2-2)
JaT
q. = _kE (B.2-3)
Cylindrical coordinates (r, 0, z):
= 4T -
9= —k7, (B.2-4)
_ 14T
9= —k T30 (B.2-5)
= 9T :
0=~k (B.2-6)
Spherical coordinates (r, 6, ¢):
- 9T K
q= k- (B.2-7)
_ 14T
G =~k 90 (B.2-8)
L_JT (B.2-9)

o = _kr sin 03(5

2 For mixtures, the term 3, (H, / M,)j,, must be added to q (see Eq. 19.3-3).
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§B.3 FICK'’S (FIRST) LAW OF BINARY DIFFUSION*
[iA = _P@ABV“’A]

Cartesian coordinates (x, y, z):

ae= =D ag ‘% (B.3-1)
Jay = —PDap % (B.3-2)
Jaz = —PDap %ﬂ (B.3-3)
Cylindrical coordinates (r, 0, z):
jar= —PDap 6—}? (B.3-4)
Jao = —PDag % aﬁ—ag‘ (B.3-5)
Jaz = —PDag % (B.3-6)
Spherical coordinates (r, 6, ¢):
Jar = —PDap &&% (B.3-7)
o= —0Daa 8 (B.3-8)
o = —PBan ‘;‘;’* (B.3-9)

2 To get the molar fluxes with respect to the molar average velocity, replace j,, p, and w, by J4, ¢, and x,,.

§B.4 THE EQUATION OF CONTINUITY"
lop/at + (V- pv) = 0]

Cartesian coordinates (x, y, z):

p 9 d 9 -
E + 5 (p’l)x) + @ (p'Uy) + 3—2 (p‘UZ) =0 (B4-1)
Cylindrical coordinates (r, 8, z):
a—t+75(rv)+;%(pvo)+ 9 (o) =0 (B.4-2)

Spherical coordinates (r, 0, ¢):

1
r sin 0 96

1
r sin 6 34;

19
—_— + '—2‘9— (przv,) +

pr (pvg sin 6) +

(pvy) = (B.4-3)

* When the fluid is assumed to have constant mass density p, the equation simplifies to (V - v) =



§B.5 The Equation of Motion in Terms of 1 847
§B.5 THE EQUATION OF MOTION IN TERMS OF 7
[pDv/Dt = =Vp — [V - 5] + pg]
Cartesian coordinates (x, y, z):°
v, o, v, g _ [ P P
p(g + v ax + v j (9y + 0, E) = "a—x I:gx‘ Tox + @Ty,\' + a—z‘l‘z'\._ + ng (B5-1)
v, v, v, du,\  dp 9 ) 9 |
p(W‘FZJYE'FZ)yEy—'F z-‘a—z— _—@_ ‘a—T +(9y vy &sz +P8y (B5-2)
v, av v, v\ _z?p R 9 9 i
p(W ¥ O Z)y W + v, 72—) = 5 [a @ Tyz + a Tzz_ + PS: (B.5-3)

? These equations have been written without making the assumption that 7 is symmetric. This means, for
example, that when the usual assumption is made that the stress tensor is symmetric, 7,, and 7, may be
interchanged.

Cylindrical coordinates (r, 0, z):*

v, v, v, du, v\ g |14 19 3 Top

p<W U,,W - ﬁ v, 'a? e _5 - 7;5;( ) T b—e Tor T 5 Ty — - + P8 (B5-4)
v, vy v, Iy, dvg VY 1 ap 19 o J Tor — Try

"(797 Ut g T ) T Trag | e g et gyt | B59)
dv, v, | Uy v, gv,\ _ 9P |14 19 .9

p( gt U T T ez)T Ta T or (r7,) + 5 90 70 T g7 T | T P8: (B.5-6)

" These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual

assumption is made that the stress tensor is symmetric, 7, — 75, = 0.
Spherical coordinates (v, 8, ¢):¢
v, v, v, v, vy v, Uty dp
Pt "% ar T T 30 " 7 sin 0 9 r )7 o
- li )+ — L 19 Twt T
2 ar (r’r,) + T Sin 636 (T,,, sin 0) + ~Sin 09 y Tor - + pg, (B.5-7)
9, v% V90 Ve v, Uy~ V4 cOtO)  10p
P\ "ot Tor T T o6 rsin0a¢ r r 90
1 9 (Ty, — Tyy) — T4y cOt 6
—_ —_ + O
3 ar a0 o) 7 sin 696 (T"” sin 6) + v sin 0 9 r P B.58)
90 0 o"v,b 0,y IV Uy 9y Vg, + U4V Ot 0 _ 1 9
P\at "% T g0 rsinoaqs r r sin 0 9
1 19 (T4, — Trp) T Tyg COt O
[,.3 ar (rr,g) + 7 sin 6 90 (T"d’ sin 0+ in 6 ap T+ r T3 (B:5-9)

¢ These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual
assumption is made that the stress tensor is symmetric, 7,, — 75, = 0.
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§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID

WITH CONSTANT p AND u
[pDv/Dt = —=Vp + uVv + pgl
Cartesian coordinates (x, y, z):
v, v, v, g\ dp  [dv, v, 8%, ]
p(ﬁ + v, I Uy‘@ + 0, E) = 7o + _0)(2 c?yz &22_ + pgy (B.6-1)
v v v, v, ap [0%v, o%, d&%v,]
y Y Y L) G ATt -
P( T + v, P + v, 3y + v, &z) =3y +#_0x2 P + pey +pg, (B.6-2)
Jv, . dv, Ly 9 . dv,\ _ dp N (0%, o, &%,] . (B63)
P ot 0, ax vy ay z 9z - 9z _&xz ayz (922_ sz .6~
Cylindrical coordinates (r, 6, 2):
9, . 9o, 0y d0, v, v __6'p+ 19 o)+ 1%, v, 200, N (B.64)
ot "0 T T T e )T Tar ar ror )T 2 T a2 pae| P o
3v, Iy Uy IV, 3y VU _ 1 p 19 L1 vy, vy 2 v,
p(at Tt T e T T )T Trae T Mar\rar T e a2 et P 665
v, évz Uy IV, v\ 1 i l v,
p( Gt T T g T az) = [ra > 22 ]+pgz (B.6-6)
Spherical coordinates (r, 6, p):
dv, ‘o v, v, dv, Vs v, v; + v} _ 9%
P\at "V T e r sin 0 9 r )T Tor
14, 19 < . z?v,.> 1 ﬁzvr]
+ u| =— @) + —\|sin— |+ —— + pg, (B.6-7)"
'u'_r2 ar? r? sin 6 90 a6 r? sin2 6 9¢? »
9y 90y Yy 5, Uy v, Ve — Uy cOt B 19p
Pat "% ar "7 98 T 7 sin 0 9 r 790
19 (29, 14( 1 1 vy 299, 2 cot§ s
+ul=Z (2 +=Z - ~ e’ LUV 94 6~
'U’er ar <r z?r) r2 90 (sm 0 80( b Sin 0)> r2sin20 9> 1290  r?sin @ P Peo (B.6-9)
v, N vy v, IV, Vy 00Uy Vg0, T Uyv, cot 0 1 dp
Plot "% ar TT 90 T rsin 6 9 r " rsin 09
19(2%)\, 14( 1 1 P 2, 2cot0d
+ 2l+=Z —+ + 6-
'u[ 20r (,»2 3’) r? 00<sm 6 96 @, sin 6)> 2 sin2@ d¢> r’sin 9P  r? sin 0 t7¢ pgs (B9

? The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V : Vv] in Table A.7-3, because we have added
to Eq. (M) the expression for (2/r)(V + v), which is zero for fluids with constant p. This gives a much simpler equation.
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§B.7 THE DISSIPATION FUNCTION ®v FOR NEWTONIAN
FLUIDS (SEE EQ. 3.3-3)

Cartesian coordinates (x,y, z):

v, Iv,\2 (oo, \? Jdv, 9o, |? . 2 [ov, v, 2 2[dv, v, av,|?
¢—2[<ax>+<7y_>+(5>]+[ﬁ+ﬁ + W-‘-E +_E+W _§_W+W+—‘E (B.7-1)
Cylindrical coordinates (v, 0, z):

_ 10y, v, \? v, \2 a (Ve 1av,.—2 1 dv, o’*vejz dv, v, |?

q) 2[((}}’) +<?%+—r—> +<(9_Z> + 1’5 7 +7¢9_04 + 7%4_&2_‘ + +§r
2|14 199y  9v, |?
[75 (rv,) + + 072] (B.7-2)

3 r a6
Spherical coordinates (v, 0, ¢):

2 av -+ 2
1@4_ + 1 _ﬁ+v, v, cot 6
r 96 r sin 0 d¢ r
i_v L1o hsinga (P )\, 1 9% | 1 9%, g (Ye)f
" or r 96 r 90\ sin 6 r sin 6 d¢ r sin 6 d¢ ar\r

_2 ——(r 1 (v sin 6) + 1 fﬂdﬁ ’ (B.7-3)
3| 20r t rin 690 " rsin  dd

§B.8 THE EQUATION OF ENERGY IN TERMS OF q
[pC,DT/Dt = —(V+q) — (9 In p/d In T),Dp/Dt — (:V¥)]

Cartesian coordinates (x, Y, z):

JT oT JT JT 99 99y  9q.| (dInp Dp_ ]
PC(E-FU\(Q_-FUJ@‘F zaz> [ +§y+g] (alnT — = (1:Vv) (B.8-1)

Cylindrical coordinates (r, 0, z):

s (aT | 9T ,vdT . 3T\ _ |14 199 94:| (Jdlnp)\ Dp o
”CP<E+U"5+73—0+ zaz> [75(r‘7')+?30+_] (m T) br ™ b.8-2)

Spherical coordinates (r, 0, ¢):

JT T | Vs T Y% 9T\_|[14 .. 1 1 s dln p %_
pC(o"t+ 'dr+ro"0+rsin00’?¢>)_[2& rg) + rsmeaﬂ(qﬂsm )+rsm6¢9¢>] (dlnT (:vv)
(B.8-3)"

* The viscous dissipation term, —(7:Vv), is given in Appendix A, Tables A.7-1, 2, 3. This term may usually be neglected, except for
systems with very large velocity gradients. The term containing (d In p/d In T), is zero for fluid with constant p.
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§B.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN
FLUIDS WITH CONSTANT" p AND k

[C,DT/Dt = kV°T + pu®,]

Cartesian coordinates (x, y, z):

o (oT . aT __ aT . oT\_ . |&PT T T b
PCP<79-t- + Z)xﬁ + vy@ + v, aZ) = k\»axz + ayz + ‘922 + p_,q)v (B9-])

Cylindrical coordinates (r, 9, z):

afoT ,  oT  veoT . oT\_,[10( oT\, 18T oT o
pcp(at to,oot g 90 + v, ax) —k_r ar <r ar) + i + &z2] + ud, (B.9-2)

Spherical coordinates (r, 6, ¢):

bl

- v,
pCp(%?+v 9T | Dol ¢ aT)

aT\_ |10 (0T 1 9. ,aT 1 &T Ly
"dr r g0 r sin 09 Z&r(r >+ 00<Sm0 >+ ]+M¢i’ (B.9-3)

r dr) ¢ sin 6 r2 sin20(97>2

* This form of the energy equation is also valid under the less stringent assumptions k = constant and (¢ In p/d In T),Dp/Dt = 0. The
assumption p = constant is given in the table heading because it is the assumption more often made.

® The function @, is given in §B.7. The term u®, is usually negligible, except in systems with large velocity gradients.

§B.10 THE EQUATION OF CONTINUITY FOR SPECIES «
IN TERMS* OF j,

[pDw,/Dt = —(V +j,) + 1]

Cartesian coordinates (x, y, z):

0(.00, Jw, 3‘% awa _ —ajax ajay ajaz
P( 3t +v*W+UVW+vZE>‘ o Ty Tz |t (101
Cylindrical coordinates (r, 6, z):
dw, dw, Vydw, dw\ _ (145 . 1% | oz
”( at Vo "7 e % ) N LA I = R (B.10-2
Spherical coordinates (1, 6, ¢):
dw, 0, Uy 0w, Vy  dw, 19 .. 1 9,. . 1 s
-z Sy ey P =|=Z + Z + + .10-
p( ot to ar r 90 rsin 0 0d>> [rZ ar (") r sin 6 46 (oo sin 6) rsinf d¢ r. (B.10-3)

? To obtain the corresponding equations in terms of J; make the following replacements:
Replace p w, ja v Yo

N
by c X I v* R,—x, > Ry
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§B.11 THE EQUATION OF CONTINUITY FOR SPECIES A
IN TERMS OF w, FOR CONSTANT" p% 45

[pDw,/Dt = p% 45Vw, + 7,]

Cartesian coordinates (x, y, z):

dw, dw, dw, dw, _02wA Pw,  Fw,
-4 — -4 = + + + 11-
p< ot + v, g + o, 3y + o, — PD 4p 4 (B.11-1)

Cylindrical coordinates (r, 6, z):

dw, dw, Uy dwy dwy\ _1 9 dw 1 Pw, Fow,
”<7+”'-7+7W+”z—az— =0Dan v 3 \" o ) T T o | T (112

Spherical coordinates (v, 6, ¢):

dw, Jws | Uy dwy Yy dw, 19 [ ,9wa 1 d( . 0w, 1 Fw,
—_—tv,——t+-—+ — = —_ —_— |+ — — |t ———|+
P( ot U ar r 46 r sin 6 do p@AB 2 r r? sin 9 90 sin a0 r2 sin2@ (9¢2 A
(B.11-3)

? To obtain the corresponding equations in terms of x,, make the following replacements:
Replace p w, v 7,

N
by c X, v* R,—x, 2 Ry
B=1
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