# The Fluxes and the Equations of Change

- §B.1 Newton's law of viscosity
- §B.2 Fourier's law of heat conduction
- §B.3 Fick's (first) law of binary diffusion
- §B.4 The equation of continuity
- §B.5 The equation of motion in terms of  $\tau$
- §B.6 The equation of motion for a Newtonian fluid with constant  $\rho$  and  $\mu$
- §B.7 The dissipation function  $\Phi_v$  for Newtonian fluids
- §B.8 The equation of energy in terms of q
- §B.9 The equation of energy for pure Newtonian fluids with constant  $\rho$  and k
- §B.10 The equation of continuity for species  $\alpha$  in terms of  $j_{\alpha}$
- §B.11 The equation of continuity for species A in terms of  $\omega_A$  for constant  $\rho \mathfrak{D}_{AB}$

#### **§B.1 NEWTON'S LAW OF VISCOSITY**

$$[\boldsymbol{\tau} = -\boldsymbol{\mu}(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\dagger}) + (\frac{2}{2}\boldsymbol{\mu} - \boldsymbol{\kappa})(\nabla \cdot \mathbf{v})\boldsymbol{\delta}]$$

Cartesian coordinates (x, y, z):

$$\tau_{xx} = -\mu \left[ 2 \frac{\partial v_x}{\partial x} \right] + {\binom{2}{3}}\mu - \kappa (\nabla \cdot \mathbf{v})$$
(B.1-1)<sup>a</sup>

$$\tau_{yy} = -\mu \left[ 2 \frac{\partial v_y}{\partial y} \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-2)<sup>a</sup>

$$\tau_{zz} = -\mu \left[ 2 \frac{\partial v_z}{\partial z} \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-3)<sup>a</sup>

$$\tau_{xy} = \tau_{yx} = -\mu \left[ \frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right]$$
 (B.1-4)

$$\tau_{yz} = \tau_{zy} = -\mu \left[ \frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z} \right]$$
 (B.1-5)

$$\tau_{zx} = \tau_{xz} = -\mu \left[ \frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right]$$
 (B.1-6)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$
 (B.1-7)

<sup>&</sup>lt;sup>a</sup> When the fluid is assumed to have constant density, the term containing  $(\nabla \cdot \mathbf{v})$  may be omitted. For monatomic gases at low density, the dilatational viscosity  $\kappa$  is zero.

#### §B.1 NEWTON'S LAW OF VISCOSITY (continued)

Cylindrical coordinates  $(r, \theta, z)$ :

$$\tau_{rr} = -\mu \left[ 2 \frac{\partial v_r}{\partial r} \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-8)<sup>a</sup>

$$\tau_{\theta\theta} = -\mu \left[ 2 \left( \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-9)<sup>a</sup>

$$\tau_{zz} = -\mu \left[ 2 \frac{\partial v_z}{\partial z} \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-10)<sup>a</sup>

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[ r \frac{\partial}{\partial r} \left( \frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-11)

$$\tau_{\theta z} = \tau_{z\theta} = -\mu \left[ \frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \right]$$
 (B.1-12)

$$\tau_{zr} = \tau_{rz} = -\mu \left[ \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \right]$$
 (B.1-13)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z}$$
(B.1-14)

*Spherical coordinates*  $(r, \theta, \phi)$ *:* 

$$\tau_{rr} = -\mu \left[ 2 \frac{\partial v_r}{\partial r} \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-15)<sup>a</sup>

$$\tau_{\theta\theta} = -\mu \left[ 2 \left( \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left( \frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-16)<sup>a</sup>

$$\tau_{\phi\phi} = -\mu \left[ 2 \left( \frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r} + v_{\theta} \cot \theta}{r} \right) \right] + \left( \frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-17)<sup>a</sup>

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[ r \frac{\partial}{\partial r} \left( \frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-18)

$$\tau_{\theta\phi} = \tau_{\phi\theta} = -\mu \left[ \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left( \frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right]$$
 (B.1-19)

$$\tau_{\phi r} = \tau_{r\phi} = -\mu \left[ \frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi} + r \frac{\partial}{\partial r} \left( \frac{v_\phi}{r} \right) \right]$$
 (B.1-20)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$
(B.1-21)

<sup>&</sup>lt;sup>a</sup> When the fluid is assumed to have constant density, the term containing ( $\nabla \cdot \mathbf{v}$ ) may be omitted. For monatomic gases at low density, the dilatational viscosity  $\kappa$  is zero.

<sup>&</sup>lt;sup>a</sup> When the fluid is assumed to have constant density, the term containing  $(\nabla \cdot \mathbf{v})$  may be omitted. For monatomic gases at low density, the dilatational viscosity  $\kappa$  is zero.

### §B.2 FOURIER'S LAW OF HEAT CONDUCTION<sup>a</sup>

| $\mathbf{a} = -k\nabla T$ |
|---------------------------|
|---------------------------|

|                                             | [4                                                                       |         |
|---------------------------------------------|--------------------------------------------------------------------------|---------|
| Cartesian coordinates (x, y, z):            |                                                                          |         |
|                                             | $q_x = -k \frac{\partial T}{\partial x}$                                 | (B.2-1) |
|                                             | $q_y = -k \frac{\partial T}{\partial y}$                                 | (B.2-2) |
|                                             | $q_z = -k \frac{\partial T}{\partial z}$                                 | (B.2-3) |
| Cylindrical coordinates $(r, \theta, z)$ :  |                                                                          |         |
|                                             | $q_r = -k \frac{dT}{\partial r}$                                         | (B.2-4) |
|                                             | $q_{\theta} = -k  \frac{1}{r}  \frac{\partial T}{\partial \theta}$       | (B.2-5) |
|                                             | $q_z = -k \frac{\partial T}{\partial z}$                                 | (B.2-6) |
| Spherical coordinates $(r, \theta, \phi)$ : |                                                                          |         |
|                                             | $q_r = -k \frac{\partial T}{\partial r}$                                 | (B.2-7) |
|                                             | $q_{\theta} = -k  \frac{1}{r}  \frac{\partial T}{\partial \theta}$       | (B.2-8) |
|                                             | $q_{\phi} = -k \frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi}$ | (B.2-9) |
|                                             |                                                                          |         |

<sup>&</sup>lt;sup>a</sup> For mixtures, the term  $\Sigma_{\alpha}(\overline{H}_{\alpha}/M_{\alpha})\mathbf{j}_{\alpha}$  must be added to  $\mathbf{q}$  (see Eq. 19.3-3).

#### §B.3 FICK'S (FIRST) LAW OF BINARY DIFFUSION<sup>a</sup>

| $[i_A$ | = | $- ho \mathfrak{D}_{AB} \nabla a$ | $[_{A}]$ |
|--------|---|-----------------------------------|----------|
| LIA    |   | Paragra                           | AI       |

Cartesian coordinates (x, y, z):

$$j_{Ax} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial x} \tag{B.3-1}$$

$$j_{Ay} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial y} \tag{B.3-2}$$

$$j_{Az} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-3}$$

Cylindrical coordinates  $(r, \theta, z)$ :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-4}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta} \tag{B.3-5}$$

$$j_{Az} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-6}$$

*Spherical coordinates*  $(r, \theta, \phi)$ :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-7}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta} \tag{B.3-8}$$

$$j_{A\phi} = -\rho \mathfrak{D}_{AB} \frac{1}{r \sin \theta} \frac{\partial \omega_A}{\partial \phi}$$
 (B.3-9)

### §B.4 THE EQUATION OF CONTINUITY<sup>a</sup>

$$[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$$

Cartesian coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-1)

Cylindrical coordinates  $(r, \theta, z)$ :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-2)

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\rho v_\phi) = 0$$
 (B.4-3)

<sup>&</sup>lt;sup>a</sup> To get the molar fluxes with respect to the molar average velocity, replace  $j_A$ ,  $\rho$ , and  $\omega_A$  by  $J_A^*$ , c, and  $x_A$ .

<sup>&</sup>lt;sup>a</sup> When the fluid is assumed to have constant mass density  $\rho$ , the equation simplifies to  $(\nabla \cdot \mathbf{v}) = 0$ .

#### §B.5 THE EQUATION OF MOTION IN TERMS OF au

$$[\rho D\mathbf{v}/Dt = -\nabla p - [\nabla \cdot \boldsymbol{\tau}] + \rho \mathbf{g}]$$

Cartesian coordinates (x, y, z):

$$\rho \left( \frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} - \left[ \frac{\partial}{\partial x} \tau_{xx} + \frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{zx} \right] + \rho g_x \quad (B.5-1)$$

$$\rho \left( \frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} - \left[ \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial z} \tau_{zy} \right] + \rho g_y \quad (B.5-2)$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} - \left|\frac{\partial}{\partial x} \tau_{xz} + \frac{\partial}{\partial y} \tau_{yz} + \frac{\partial}{\partial z} \tau_{zz}\right| + \rho g_z \quad (B.5-3)$$

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \left( \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} - \left[ \frac{1}{r} \frac{\partial}{\partial r} (r \tau_{rr}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r} \right] + \rho g_r$$
(B.5-4)

$$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_{z}\frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} - \left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\tau_{r\theta}\right) + \frac{1}{r}\frac{\partial}{\partial \theta}\tau_{\theta\theta} + \frac{\partial}{\partial z}\tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r}\right] + \rho g_{\theta}$$
(B.5-5)

$$\rho \left( \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} - \left[ \frac{1}{r} \frac{\partial}{\partial r} (r \tau_{rz}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta z} + \frac{\partial}{\partial z} \tau_{zz} \right] + \rho g_z$$
(B.5-6)

$$\rho \left( \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r}$$

$$- \left[ \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta r} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi r} - \frac{\tau_{\theta \theta} + \tau_{\phi \phi}}{r} \right] + \rho g_r$$
(B.5-7)

$$\rho \left( \frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta} - v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$- \left[ \frac{1}{r^{3}} \frac{\partial}{\partial r} \left( r^{3} \tau_{r\theta} \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left( \tau_{\theta\theta} \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi\theta} + \frac{(\tau_{\theta r} - \tau_{r\theta}) - \tau_{\phi\phi} \cot \theta}{r} \right) + \rho g_{\theta}$$
(B.5-8)

$$\rho \left( \frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}v_{r} + v_{\theta}v_{\phi} \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}$$

$$- \left[ \frac{1}{r^{3}} \frac{\partial}{\partial r} (r^{3}\tau_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta\phi} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi\phi} + \frac{(\tau_{\phi r} - \tau_{r\phi}) + \tau_{\phi\theta} \cot \theta}{r} \right] + \rho g_{\phi}$$
(B.5-9)

<sup>&</sup>lt;sup>a</sup> These equations have been written without making the assumption that  $\tau$  is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric,  $\tau_{xy}$  and  $\tau_{yx}$  may be interchanged.

<sup>&</sup>lt;sup>b</sup> These equations have been written without making the assumption that  $\tau$  is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric,  $\tau_{r\theta} - \tau_{\theta r} = 0$ .

<sup>&</sup>lt;sup>c</sup> These equations have been written without making the assumption that  $\tau$  is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric,  $\tau_{r\theta} - \tau_{\theta r} = 0$ .

## §B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT $\rho$ AND $\mu$

$$[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$$

Cartesian coordinates (x, y, z):

$$\rho \left( \frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left[ \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right] + \rho g_x \qquad (B.6-1)$$

$$\rho \left( \frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left[ \frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right] + \rho g_y \qquad (B.6-2)$$

$$\rho \left( \frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[ \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z \qquad (B.6-3)$$

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \left( \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[ \frac{\partial}{\partial r} \left( \frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right] + \rho g_r$$
(B.6-4)

$$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_{z}\frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(rv_{\theta}\right)\right) + \frac{1}{r^{2}}\frac{\partial^{2}v_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2}v_{\theta}}{\partial z^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta}\right] + \rho g_{\theta}$$
(B.6-5)

$$\rho \left( \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z$$
(B.6-6)

$$\rho \left( \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[ \frac{1}{r^2} \frac{\partial^2}{\partial r^2} (r^2 v_r) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} \right] + \rho g_r$$
(B.6-7)<sup>a</sup>

$$\rho \left( \frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta} - v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$+ \mu \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial v_{\theta}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( v_{\theta} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\theta}}{\partial \phi^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} - \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} \right] + \rho g_{\theta}$$
(B.6-8)

$$\rho \left( \frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}v_{r} + v_{\theta}v_{\phi} \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}$$

$$+ \mu \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial v_{\phi}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( v_{\phi} \sin \theta \right) \right) + \frac{1}{r^{2}} \frac{\partial^{2}v_{\phi}}{\partial \theta^{2}} + \frac{2}{r^{2}} \frac{\partial^{2}v_{r}}{\sin \theta} \frac{\partial^{2}v_{\theta}}{\partial \phi} + \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial^{2}v_{\theta}}{\partial \phi} \right] + \rho g_{\theta} \quad (B.6-9)$$

<sup>&</sup>lt;sup>a</sup> The quantity in the brackets in Eq. B.6-7 is *not* what one would expect from Eq. (M) for  $[\nabla \cdot \nabla \mathbf{v}]$  in Table A.7-3, because we have added to Eq. (M) the expression for  $(2/r)(\nabla \cdot \mathbf{v})$ , which is zero for fluids with constant  $\rho$ . This gives a much simpler equation.

### §B.7 THE DISSIPATION FUNCTION $\Phi v$ FOR NEWTONIAN FLUIDS (SEE EQ. 3.3-3)

Cartesian coordinates (x, y, z):

$$\Phi_{v} = 2 \left[ \left( \frac{\partial v_{x}}{\partial x} \right)^{2} + \left( \frac{\partial v_{y}}{\partial y} \right)^{2} + \left( \frac{\partial v_{z}}{\partial z} \right)^{2} \right] + \left[ \frac{\partial v_{y}}{\partial x} + \frac{\partial v_{x}}{\partial y} \right]^{2} + \left[ \frac{\partial v_{z}}{\partial y} + \frac{\partial v_{y}}{\partial z} \right]^{2} + \left[ \frac{\partial v_{x}}{\partial z} + \frac{\partial v_{z}}{\partial x} \right]^{2} - \frac{2}{3} \left[ \frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z} \right]^{2}$$
(B.7-1)

Cylindrical coordinates  $(r, \theta, z)$ :

$$\Phi_{v} = 2\left[\left(\frac{\partial v_{r}}{\partial r}\right)^{2} + \left(\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r}\right)^{2} + \left(\frac{\partial v_{z}}{\partial z}\right)^{2}\right] + \left[r\frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right) + \frac{1}{r}\frac{\partial v_{r}}{\partial \theta}\right]^{2} + \left[\frac{1}{r}\frac{\partial v_{z}}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z}\right]^{2} + \left[\frac{\partial v_{r}}{\partial z} + \frac{\partial v_{z}}{\partial z}\right]^{2} - \frac{2}{3}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rv_{r}\right) + \frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_{z}}{\partial z}\right]^{2}$$
(B.7-2)

*Spherical coordinates*  $(r, \theta, \phi)$ :

$$\Phi_{v} = 2 \left[ \left( \frac{\partial v_{r}}{\partial r} \right)^{2} + \left( \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right)^{2} + \left( \frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r} + v_{\theta} \cot \theta}{r} \right)^{2} \right] 
+ \left[ r \frac{\partial}{\partial r} \left( \frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]^{2} + \left[ \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left( \frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right]^{2} + \left[ \frac{1}{r \sin \theta} \frac{\partial v_{r}}{\partial \phi} + r \frac{\partial}{\partial r} \left( \frac{v_{\phi}}{r} \right) \right]^{2} 
- \frac{2}{3} \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2}v_{r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} \right]^{2}$$
(B.7-3)

### §B.8 THE EQUATION OF ENERGY IN TERMS OF q

$$[\rho \hat{C}_v DT/Dt = -(\nabla \cdot \mathbf{q}) - (\partial \ln \rho/\partial \ln T)_v Dp/Dt - (\tau : \nabla \mathbf{v})]$$

Cartesian coordinates (x, y, z):

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{x} \frac{\partial T}{\partial x} + v_{y} \frac{\partial T}{\partial y} + v_{z} \frac{\partial T}{\partial z} \right) = - \left[ \frac{\partial q_{x}}{\partial x} + \frac{\partial q_{y}}{\partial y} + \frac{\partial q_{z}}{\partial z} \right] - \left( \frac{\partial \ln \rho}{\partial \ln T} \right)_{p} \frac{Dp}{Dt} - (\tau : \nabla \mathbf{v})$$
(B.8-1)<sup>a</sup>

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_{z} \frac{\partial T}{\partial z} \right) = - \left[ \frac{1}{r} \frac{\partial}{\partial r} (rq_{r}) + \frac{1}{r} \frac{\partial q_{\theta}}{\partial \theta} + \frac{\partial q_{z}}{\partial z} \right] - \left( \frac{\partial \ln \rho}{\partial \ln T} \right)_{p} \frac{Dp}{Dt} - (\tau : \nabla \mathbf{v})$$
(B.8-2)<sup>a</sup>

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) = \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2}q_{r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (q_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial q_{\phi}}{\partial \phi} \right] - \left( \frac{\partial \ln \rho}{\partial \ln T} \right)_{p} \frac{Dp}{Dt} - (\tau : \nabla \mathbf{v})$$
(B.8-3)

<sup>&</sup>lt;sup>a</sup> The viscous dissipation term,  $-(\tau:\nabla \mathbf{v})$ , is given in Appendix A, Tables A.7-1, 2, 3. This term may usually be neglected, except for systems with very large velocity gradients. The term containing  $(\partial \ln \rho/\partial \ln T)_p$  is zero for fluid with constant  $\rho$ .

### §B.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN FLUIDS WITH CONSTANT<sup>a</sup> $\rho$ AND k

$$[\rho \hat{C}_v DT/Dt = k\nabla^2 T + \mu \Phi_v]$$

Cartesian coordinates (x, y, z):

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{x} \frac{\partial T}{\partial x} + v_{y} \frac{\partial T}{\partial y} + v_{z} \frac{\partial T}{\partial z} \right) = k \left[ \frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right] + \mu \Phi_{v}$$
(B.9-1)<sup>b</sup>

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_{z} \frac{\partial T}{\partial z} \right) = k \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right] + \mu \Phi_{v}$$
(B.9-2)<sup>b</sup>

*Spherical coordinates*  $(r, \theta, \phi)$ :

$$\rho \hat{C}_{p} \left( \frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) = k \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}} \right] + \mu \Phi_{v}$$
(B.9-3)

## §B.10 THE EQUATION OF CONTINUITY FOR SPECIES $\alpha$ IN TERMS<sup>a</sup> OF $j_a$

$$[\rho D\omega_{\alpha}/Dt = -(\nabla \cdot \mathbf{j}_{\alpha}) + r_{\alpha}]$$

Cartesian coordinates (x, y, z):

$$\rho \left( \frac{\partial \omega_{\alpha}}{\partial t} + v_{x} \frac{\partial \omega_{\alpha}}{\partial x} + v_{y} \frac{\partial \omega_{\alpha}}{\partial y} + v_{z} \frac{\partial \omega_{\alpha}}{\partial z} \right) = - \left[ \frac{\partial j_{\alpha x}}{\partial x} + \frac{\partial j_{\alpha y}}{\partial y} + \frac{\partial j_{\alpha z}}{\partial z} \right] + r_{\alpha}$$
(B.10-1)

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \left( \frac{\partial \omega_{\alpha}}{\partial t} + v_{r} \frac{\partial \omega_{\alpha}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial \omega_{\alpha}}{\partial \theta} + v_{z} \frac{\partial \omega_{\alpha}}{\partial z} \right) = - \left[ \frac{1}{r} \frac{\partial}{\partial r} (rj_{\alpha r}) + \frac{1}{r} \frac{\partial j_{\alpha \theta}}{\partial \theta} + \frac{\partial j_{\alpha z}}{\partial z} \right] + r_{\alpha}$$
(B.10-2)

$$\rho \left( \frac{\partial \omega_{\alpha}}{\partial t} + v_{r} \frac{\partial \omega_{\alpha}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial \omega_{\alpha}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial \omega_{\alpha}}{\partial \phi} \right) = \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} j_{\alpha r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (j_{\alpha \theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial j_{\alpha \phi}}{\partial \phi} \right] + r_{\alpha} \quad (B.10-3)$$

<sup>&</sup>lt;sup>a</sup> This form of the energy equation is also valid under the less stringent assumptions k = constant and  $(\partial \ln \rho / \partial \ln T)_p D p / D t = 0$ . The assumption  $\rho = \text{constant}$  is given in the table heading because it is the assumption more often made.

<sup>&</sup>lt;sup>b</sup> The function  $\Phi_v$  is given in §B.7. The term  $\mu\Phi_v$  is usually negligible, except in systems with large velocity gradients.

<sup>&</sup>lt;sup>a</sup> To obtain the corresponding equations in terms of  $J_{\alpha}^{*}$  make the following replacements:

## SB.11 THE EQUATION OF CONTINUITY FOR SPECIES A IN TERMS OF $\omega_A$ FOR CONSTANT<sup>a</sup> $\rho \mathfrak{D}_{AB}$

$$[\rho D\omega_A/Dt = \rho \mathfrak{D}_{AB} \nabla^2 \omega_A + r_A]$$

Cartesian coordinates (x, y, z):

$$\rho \left( \frac{\partial \omega_A}{\partial t} + v_x \frac{\partial \omega_A}{\partial x} + v_y \frac{\partial \omega_A}{\partial y} + v_z \frac{\partial \omega_A}{\partial z} \right) = \rho \mathfrak{D}_{AB} \left[ \frac{\partial^2 \omega_A}{\partial x^2} + \frac{\partial^2 \omega_A}{\partial y^2} + \frac{\partial^2 \omega_A}{\partial z^2} \right] + r_A$$
(B.11-1)

Cylindrical coordinates  $(r, \theta, z)$ :

$$\rho \left( \frac{\partial \omega_A}{\partial t} + v_r \frac{\partial \omega_A}{\partial r} + \frac{v_\theta}{r} \frac{\partial \omega_A}{\partial \theta} + v_z \frac{\partial \omega_A}{\partial z} \right) = \rho \mathfrak{D}_{AB} \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \omega_A}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \omega_A}{\partial \theta^2} + \frac{\partial^2 \omega_A}{\partial z^2} \right] + r_A$$
(B.11-2)

$$\rho \left( \frac{\partial \omega_{A}}{\partial t} + v_{r} \frac{\partial \omega_{A}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial \omega_{A}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial \omega_{A}}{\partial \phi} \right) = \rho \mathfrak{D}_{AB} \left[ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial \omega_{A}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial \omega_{A}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \omega_{A}}{\partial \phi^{2}} \right] + r_{A}$$
(B.11-3)

Replace 
$$\rho$$
  $\omega_{\alpha}$   $\mathbf{v}$   $r_{\alpha}$  by  $c$   $x_{\alpha}$   $\mathbf{v}^*$   $R_{\alpha} - x_{\alpha} \sum\limits_{\beta=1}^{N} R_{\beta}$ 

<sup>&</sup>lt;sup>a</sup> To obtain the corresponding equations in terms of  $x_A$ , make the following replacements: