Esercizio

In un condotto cilindrico di lunghezza L=10m e diametro interno D=5cm passa un liquido (ρ =775 kg/m³, η =8.89 10⁻⁴ kg/(m s)) con una portata Q=1.716 10⁻³ m³/s.

Il profilo di velocità contro la distanza dall'asse del cilindro, r, è descritto

dall'equazione
$$v(r) = v_{max} \left(1 + a_1 \left(\frac{r}{R} \right)^2 + a_2 \left(\frac{r}{R} \right)^{2m} \right)$$

con $v_{max}=1.053 \text{ m/s}$; $a_1=-0.353$; $a_2=-0.647$; m=32

Calcolare:

- a) lo sforzo alla parete
- b) il fattore di attrito
- b) la perdita di carico sul condotto
- c) il rapporto fra la viscosità laminare e quella turbolenta per i seguenti valori del rapporto r/R: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1