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Capillary Rheometer

The capillary rheometer (or 
viscometer) is the most 
common device for measuring 
viscosity. Gravity, compressed 
gas or a piston is used to 
generate pressure on the test 
fluid in a reservoir. A capillary 
tube of radius R and length L 
is connected to the bottom of 
the reservoir. Pressure drop 
and flow rate through this tube 
are used to determine 
viscosity
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Capillary Rheometer Analysis
The flow situation inside the capillary rheometer die is essentially 
identical to the problem of pressure driven flow inside a tube (Poiseuille
flow). 

�We can record force on 
piston, F (or the pressure 
drop ∆P), and volumetric 
flow rate, Q
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Capillary Rheometer Analysis

�Hagen-Poiseuille law for pressure driven flow of Newtonian 
fluids inside a tube:
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�Shear stress profile inside the tube:
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�Velocity profile inside the tube:



















−
µ

∆=
22

R

r
1

L4

 RP
)r(u

Recall from Fluid Mechanics
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Capillary Rheometer Analysis
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� Shear rate:
True shear rate for 
Newtonian fluids but 
Apparent shear rate (   app) 
for non-Newtonian fluids

∴ For non-Newtonian fluids if we use the apparent shear rate then we 
can only calculate an Apparent Viscosity:
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Capillary Rheometer Analysis

For non-Newtonian fluids the Rabinowitch analysis is followed

- From the definition of the volumetric flow rate through a tube:
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- Applying the “no-slip” boundary condition and eliminating r with the aid 
of eq. (1)
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Capillary Rheometer Analysis
After several manipulations we obtain the Rabinowitch equation
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∴ The Real Viscosity 
of the polymer melt is:
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Capillary Rheometer Analysis

�To obtain the “true” shear rate we must plot Q vs τw on logarithmic 
coordinates to evaluate the derivative dlnQ/dlnτw for each point of the curve

�For power-law fluids, it turns out that the slope is:
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Entrance Pressure Drop
�In the previous analysis we have assumed that the measured ∆P by the 
instrument corresponds to the pressure drop inside the capillary die, ∆Pcap

∆Pcap

∆Pres~0

∆Pe= Entrance Pressure Drop

In reality
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∆=τTherefore from eq. (1) we had:
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Entrance Pressure Drop

Newtonian Fluids and some 
melts such as HDPE and PP

Fluids with pronounced non-
Newtonian behaviour
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Bagley Correction for ∆∆∆∆Pe
Unless a very long capillary is used (L/D>100), entrance pressure drop may 
considerably affect the accuracy of the measurements.

�The Bagley correction is used to correct for this, by assuming that we can 
represent this extra entrance pressure drop by an equivalent length of die, e:

− Three or four capillaries are used and results are plotted as DP vs L/R:
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The true shear stress is:
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Summary of Corrections

Calculate the apparent shear rate: 3app R
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Correct the shear rate by using the Rabinowitch correction:
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Obtain true shear stress by using Bagley correction:
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Calculate true viscosity:
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