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20 1. Outlince of fluid motion with friction

f. Comparison betwcen the theory of perfect fluids and experiment

In the cases of the motion of water and air, which are the most important ones
in enginecring applications, the Reynolds numbers are very large because of the
very low viscosities of these fluids. It would, therefore, appear reasonable to expect
very good agreement between experiment and a theory in which the influence of
viscosity is neglected altogether, i. ¢. with the theory of perfect fluids. In any case
it secros useful to begin the comparison with experiment by reference to the theory
of perfect fluids, if only on account of the large number of existing explicit mathe-
matical solutions.

In fact, for certain classes of problems, such as wave formation and tidal motion,
excellent results were obtained with the aid of this theoryt. Most problems to be
discussed in this book consist in the study of the motion of solid b/odies through fluids
at rost, or of fuids flowing through pipes and channels. In such cases the use of
the theory of perfect fluids is limited because its solutions do, not satisfy the con-
dition of no slip at the solid surface which is always the case, with real fluids even
at very small viscosities. In a perfect fluid there is slip at a wall, and this circum-
stance introduces, even for small viscositics, such fundametal dilferences that it
_is rather surprising to find in some cases (e. g. in the case of very slender, stream-line
bodies) that the two solutions display a good measure of agrecement. The greatest
discrepancy betwcen the theory of a perfect fluid and experiment exists in the
consideration of drag. The perfect-fluid theory leads to the conclusion that when
an arbitrary solid body moves through an infinitely extended fluid at rest it ex-
pericnces no force acting in the direction of motion, i. e. that its drag is zero (d’Alem-
bert’s paradox). This result is in glaring contradiction to observed fact, as drag is
measured on all bodics, even if it can become very small in the case of a stream-
line body in stecady flow parallel to its axis.

By way of illustration we now proposc to make some remarks concerning the
flow about a circular cylinder. The arrangement of streamlines for a perfect fluid is
given in Fig. 1.9, It follows at once from considerations of symmetry that the resultant
force in the direction of motion (drag) is equal to zero. The pressure distribution
according to the theory of frictionless motion is given in Fig. 1.10, together with the
results of measurcments at three values of the Reynolds number. At the leading
edge, all measured pressure distributions agree, to a certain extent, with that for a
perfect fluid. At the trailing end, the discrepancy between theory and measurement
becomes large because of the large drag of a circular eylinder. The pressure distri-
bution at the lowest, suberitical Reynolds number R = 1-9 x 105 differs most from
that given by potential theory. The measurements corresponding to the two largest
Reynolds numbers, R = 6-7 x 105 and R = 8-4 X 105, are closer to the potential
curve than those performed at the lowest Reynolds number. The large variation of
pressure distribution with Reynolds number will be discussed in detail in the next
chapter. A corresponding pressure-distribution curbe around a meridian section of a
sphere is reproduced in Fig. 1.11. Here, too, measurements show large differences for
the two Reynolds numbers, and, again, the smaller Reynolds number lies in the range

t O eogo BOWL Lamb: Hydrodynamies, 6th ed., Dover, New York, 1945,
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Fig. 1.9. Frictionless flow about a -3 R \ d
circular cylinder . Fig. 1.10

Fig. 1.10. Pressure distribution on a circular cylinder in the suberitical and supercritical range of

Reynolds numbers after the measurements of O. Flachsbart [4] and A. Roshko [13]. §eo = L e V2
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Reynolds numbers, as mea- \_ / \ /‘
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of large drag cocfficicnts, whereas the larger valuo lids in the range of small drag
coefficients, Fig. 1.5. In this case the micasured pressure-distribution curve for the
large Reynolds number approximates the theorctical durve of frictionless flow very
well over the greatest part of the circumfcrence. i .

Considerably better agreement between the theoretical and measured pressure
distribution is obtained for a streamline body in a flow parallel to its axis [5],
Fig. 1.12. Good agreement exists here over almost the whole length of the body,
with the exception of a small region near its trailing end. As will be shown later
this circumstance is a consequence of the gradual pressure increasé in the down-
stream direction.

Although, generally speaking, the theory of perfect fluids does not lead to
useful results as far as drag calculations are concerned, the lift can be calculated from
it very successfully. Fig. 1.13 represents the relation between the lift coefficient and
angle of incidence, as measured by A. Betz [2] in the case of a Zhukovskii acrofoil
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of infinite span and provides a comparison with theory. In the range of in(:i(lcnce
angles o == — 10° to 10° the agreement js scen to be good and the small differences
can be explained by the influence of frict,ion..'l'h?. mnnsum'(l‘ and 'cnlculnt.c(l pressure
distributions agree very well too, as shown in Fig. 1.14. Jl}c discrepancy between
theory and measurciment displayed in Figs. 1.13 an(l.l.l4 is a conscquence of the
displacement action of the boundary layer and constitutes a boundary-layer effect
of higher order, as will be shown again in Sec. [X].

Fig. 1.14. Comparison between
the theoretical and measured
distribution  for a
Zhukovskii profile at equal lifts,
aftev A, Betz [2)

])r(‘ﬁﬁl e

Fig. 1.12. Pressure distribution
about a stream-line body of
comparison bet-
ween theory and measurement,
after Fuhrmann [5)
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CHAPTER 11

Outline of boundary-layer theory

a. The boundary-layer concept

In the case of fluid motions for which the measured pressure distribution nearly
agrees with the perfect-fluid theory, such as the flow past t':he stre:'mmline body
in Fig. 1.12, or the aerofoil in Fig. 1.14, the influence of viscosity at high Reynolds
numbers is confined to a very thin layer in the immediate neighbourhood of the
solid wall. If the condition of no slip were not to be satisfied in the case of a real
fluid there would be no appreciable difference between the field of flow of the TCfll
fluid as compared with that of a perfect fluid. The fact that at th(.> wall the ﬂu§d
adheres to it means, however, that frictional forces retard the motion .of .the fluid
in a thin Jayer near the wall. In that thin layer the velocity of the fluid increases
from zero at the wall (no slip) to its full value which correspouds to external frictionless
flow. The layer under consideration is called the boundary layer, and the concept

is due to L. Prandtl [25].

Tig. 2.1. Motion along a thin flat plate,
from Prandtl-Tietjens

I = Icngth of plate;
Reynolds number R = Vify = 3

Figure 2.1 teproduces a picture of the motion of water along a thi'n flat plate
in which the strcamlines were made visible by the sprinkling of particles on t:he
surface of the water. The traces left by the particles are proportional to the velocity
of flow. It is scen that there is a very thin layer near the wall in which the velocity
is” considerably smaller than at a larger distance from it. The thickness of this
boundary layer increases along the plate in a downstream direction. Fig. 2.2 repre-
sents diagrammatically the velocity distribution in such a boundary layer at the
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plate, with the dimensions across it considerably exaggerated. In front of the
leading edge of the plate the velocity distribution is uniform. With increasing distance
from the leading edge in the downstream direction the thickness, 9, of the retarded
layer increases continuously, as incrensing quantitics of fluid becomo nffooted.
Evidently the thickness of the boundary layer decreases with decreasing viscosity.

Fig. 2.2. Sketch of boundary
layer on a flat plate in par-
allel flow at zero incidence

On the other hand, even with very small viscosities (large Reynolds numbers) the
frictional shearing stresses 7 = e du/dy in the boundary layer are considerable
beeause of the large velocity gradient across the flow, wherens outsido the boundary
layer they are very small. This physical picture suggests that the ficld of flow in the
case of fluids of small viscosity can be divided, for the purpose of mathematical
analysis, into two regions: the thin boundary layer near the wall, in which friction
must be taken into account, and the region outside the boundary layer, where the
forces due to friction are small and may be neglected, and where, thercfore, the
perfect-fluid theory offers a very good approximation. Such a division of the field
of flow, as we shall see in more detail later, brings about a considerable simplification
of the mathematical theory of the motion of fluids of low viscosity. In fact, the
theoretical study of such motions was only made possible by Prandtl when he
introduced this concept.

We now propose to explain the basic concepts of boundary-layer theory with
the aid of purely physical ideas and without the use of mathematics. The mathemati-
cal boundary-layer theory which forms the main topic of this book will be discussed
in the following chapters.

The decelerated fluid particles in the boundary liyer do not, in all cascs, remain
in the thin layer which adheres to the body along the whole wetted length of the
wall. In some cases the boundary layer increases its thickness considerably in the
downstream direction and the flow in the boundary layer becomes reversed. This
causes the decelerated fluid particles to be forced outwards, which mecans that
the boundary layer is separated from the wall. We then speak of boundary-layer
separation. This phenomenon is always associated with the formation of vortices
and with large energy losses in the wake of the body. It occurs primarily near blunt
bodies, such as circular eylinders and spheres. Behind such a body there exists a region
of strongly decclerated flow (so-called wake), in which the pressure distribution
deviates considerably from that in a frictionless fluid, as seen from Figs.1.10 and 1.11
in the respective cascs of a cylinder and a sphere. The large drag of such bodies can
he explained by the existence of this large deviation in pressure distribution, which
is, in turn, a consequence of boundary-layer separation.
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Estimation of boundary-layer thickness: The t-hickness ofa boundary ]ayc}‘ )Vl&mh
has not separated can be easily ostimalm;d in' the folk)wmp?' way. thrclns l;(‘, mrn
forces can be neglected with respect to inertia forces outside t!m boyrl(.:;ry.bn?{‘(l: ,
owing to low viscosity, they arc of a compara.ble ord.cr of magnitude insic cal . ,Flc
inertia force per unit volume is, as explained in .Sectvlon [ e, equal to g ulaul':c. u(,):
a plate of length [ the gradient Owfox is proport!onul. to UJL, 'whcm U (Vc]‘.x‘\o ,ché [,
velocity outside the boundary layer. lence the nmrl:m. foreo is of the or¢ (ir 0 tJl/,.
On the othor hand the friction force per unit volumc‘ is equal .to E)r/@yt whie 1,')011' e
assumption of laminar flow, is equal to p 82u/dy® The velocity gmd.mr_xt ?)1[&/(_1/ in ':
direction perpendicular to the wall is of the ord.cx: /3 so (,ha.b the f[‘l](ttl(;n. L(.)rcc 'pred
unit volume is A1/dy ~ o 1/]0% From the condition of equality of the friction an
inertia forces the following relation is obtained:

U %
Hoge ™ ‘g’r

or, solving for the .l)mmd:U'yJay(‘.r thickness d1:
wl 9/l 2.1)
s~Viv=V-

The numerical factor which is, so far, still undetermined will b(? (lc(}ll(:e(l fater
((Yll;x[). VIL) from the exact solution given by 1L B‘lasms (4}, and it will t,un; out
that it is equal to 5§, approximately. Hence for laminar flow in the boundary layer

V:;i ] (2.1a)

The dimensionless boundary-layer thickness, referred to the length of the plate, I,

S _p 1/4 _ 5 (2.2)
i Ul g

where R, denotes the Reynolds number related to the lc.ngth of tl‘le plate,‘/l; It 1;
seen from cqn. (2.1) that the boundary-layer thickness is pr(fportlonal to v]an
to ‘/l,. If Lis replaced by the variable distance x from the leading edge of the p a.te,
it is seen that § increases proportionately to V:z (.)n the other hand the rela.t;/v;
boundary-layer thickness 8/l decreases with increasing Reynolds number as l]/
so that in the limiting case of frictionless flow, with R — oo, the boundary-layer

we have

becomes:

thickness vanishes.

We are now in a position to estimate the shearing stress 7, on the wall,]and
consequently, the total drag. According to Newton’s law of friction (1.2) we have

ou’
Tg = M 5.;/ o’

+ A more rigorous definition of houndary-layer thickness is given at the end of this section.
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where subscript 0 denotes the value at the wall, i. e. for y = 0. With the estimate
(0u[By)y ~ U[d we obtain ty~ pu U[d and, inserting the value of § from cqn. (2.1),

we have
eU _ 1/iel’
To ~ u U ‘/;[ == l/* l" . (2.3)

Thus the frictional stress near the wall is proportional to U2,

We can now form a dimensionless stress with reference Lo o U?, as explained
in Chap. I, and obtain

.

T,
e~ = (2.3a)
e U? e Ul VRI

This result agrees with the dimensional analysis in Chap. I, which predicted that
the dimensionless shearing stress could depend on the Reynolds number only.

The tatal drag D on the plate is equal to blt, where b denotes the width of the
plate. Hence, with the aid of eqn. (2.3) we obtain

D~bVyouUs. (2.4)

The laminar frictional drag is thus scen to be proportional to [7%2 and (U2 Pro-
portionality to I'/2 means that doubling the plate length does not double the drag,
and this result can be understood by considering that the downstream part of the
plate expericnces a smaller drag than the leading portion because the boundary
layer is thicker towards the trailing edge. Finally, we can write down an expression
for the dimensionless drag cocfficient in accordance with eqn. (1.14) in which the
reference area A will be replaced by the wetted area bl. 1lence eqn. (2.4) gives that

T 1
Cpr~ V‘/"— = =
e Ul VR,
The numerical factor follows from ITI. Blasius's exact solution, and is 1-328, so thal,
the drag of a plate in parallel laminar flow becomes

= 1328 (2.5)

VR,

The following numerical example will serve to ilustrate the preceding estimation :
Laminar flow, stiputated here, is obtained, as is known from experiment, for Rey-
nolds numbers Ulfy not exceeding about 5 x 105 to 105, For larger Reynolds
numbers the boundary layer becomes turbulent. We shall now ealeulate the boundary-
layer thickness for the flow of air (v — 0-144 x 10-* ft?/sce) at the end of a plate
of length I =3 ft at a velocity U = 48 ft/sec. This gives R, = U/ljy = 105 and
from eqn. (2.2)

2 = 50005, 8- 018in
i 103 ’ ’
The drag coefficient from eqn. (2.5) is Cp == 0-0013 i. c. cxceedingly small when
compared with that for a circular cylinder, Fig. 1.4, because the drag cocfficient. for
a eylinder also includes pressure forces.
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Definition of houndary-layer thickness: The definition of the boundary-layer
thickness is to a certain extent arbitrary because transition from the velocity in
the boundary to that outside it takes place asymptotically. This is, hf)\vﬂVCI’, of
no practical importance, because the velocity in the boundary layer attains a value
which is very close to the external velocity already at a small distance from the
wall. It is possible to define the boundary-fayer thickness as that distanco from the
wall where the velocity differs by 1 per cent from the external velocity. With this
definition the numerical factor in eqn. (2.2) has the value 5. Instead of the boundary-
layer thickness, another quantity, the displacement thickness 4, is sometimes used,
Fig. 2.3. 1t is defined by the equation

o0
Ud, = [ (U — uydy. (2.6)
[
yl_ U
u(y) 16’ Fig. 2.3.  Displacement thickness 8, in a boundary layer
AT 77U

The displacement thickness indicates the distance by which the external stream-
Jines are shifted owing to the formation of the boundary layer. In the case of a plate
in parallel flow and at zero incidonce the displacement thickness is about 1 of the
boundary-layer thickness § given in eqn. (2.1a).

b. Separation and vortex formation

The boundary layer near a flat plate in parallel flow and at zero incidence is
particularly simple, because the static pressure remains constant in the whole field
of flow. Since outside the boundary layer the velocity remains constant the same
applics to the pressure because in the frictionless flow Bernoulli’s equation remains
valid. Furthermore, the pressure remains sensibly constant over the width of the
boundary layer at a given distance z. lence the pressure over the width of the
boundary layer has the same magnitude as outside the boundary layer at the same
distance, and the same applics to cases of arbitrary body shapes when the pressure
outside the boundary layer varies along the wall with the length of arc. This fact
js expressed by saying that the external pressure is “impressed” on tlTe boundary
layer. ITence in the case of the motion past a plate the pressurc remains constant
throughout the boundary layer.

The phenomenon of boundary-layer sopavmtimlmontif)_n_(jg! previouslyis intimately
connected with the pressure distribution in the boundary layer. In the boundary
layer on a plate no separation takes place as no back-flow occurs. -

* In order to explain the very important phenomenon of boundary-layer separation
let us consider the flow about a blunt body, e. g. about a circular eylinder, as shown
in Fig. 2.4. In frictionless flow, the fluid particles are accelerated on the upstream
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half from D to B, and decelerated on the downstream half from % to F. Hence the
pressure decreases from D to % and increases from E to F. When the flow is started
up the motion in the first instant is very nearly frictionless, and remains so as long as
the boundary laycr remains thin. Qutside the boundary layer thero is a transformation
of pressure into kinctic encrgy along D I, the reverse laking placo nlong £ F, so
that a particle arrives at # with tho same velocity as it had at . A fluid particle
which moves in the immedinte vicinity of the wall in the boundary layer remains
under the influence of the same pressure field as that existing outside, because the
external pressure is impressed on the boundary layer. Owing to the large friction
forces in the thin boundary layer such a particle consumes so much of its kinktic

Fig. 2.4. Boundary-layer separa-
tion and vortex formation on a
circular cylinder (diagrammaitic)

8§ = point of separation

energy on its path from D to E that the remainder is too small to surmount the
“pressure hill” from £ to F. Such a particle cannot move far into the region of
increasing pressure between & and F and its motion is, eventually, arrested. The
external pressure causes it then to move in the opposite direction. The photographs
reproduced in Fig. 2.5 illustrate the sequence of events near the downstream side of
a round body when a fluid flow is started. The pressure increases along the body
contour from left to right, the flow having been made visible by sprinkling aluminium
dust on the surface of the water. The boundary layer can be casily recognized by
reference to the short traces. In Fig. 2.5a, taken shortly after the start of the motion,
the reverse motion has just begun. In Fig. 2.5b the reverse motion has penatrated
a considerable distance forward and the boundary layer has thickened appreciably.,
Fig. 2.5 ¢ shows how this reverse motion gives rise to a vortex, whose sizc is increased
still further in Fig. 2.6d. "The vortex becomes separated shorlly afterwards and moves
downstream in the fluid. This circumstance changes completely the ficld of flow
in tho wake, and the pressure disteibution suffers a radical change, as compared
with f[rictionless flow. The final state of motion can be inferred from Tig. 2.6. In
the eddying region behind the cylinder there is considerable suction, as scen from
the pressure distribution curve in Fig. 1.10. This suction causes a large pressure drag
on the body. \

At a larger distance from the body it is possible to discern a regular pattern
of vortices which move alternately clockwise and counterclockwise, and which is
known as a Kdrmén vortex street [20], Fig. 2.7 (see also Fig. 1.6). In Fig. 2.6 a vortex
moving in a clockwise direction can be seen to be about to detach itself from the
body before joining the pattern. In a further paper, von Kdrmdn [21} proved
that such vortices are generally unstable with respect to small disturbances parallel
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Fig. 2.5b

Fig. 2.5¢ Fig. 2.5d
Fig. 2.5a, b, e, d.  Development of boundary-layer separation with time, after Prandtl-Tictjens
[27]. See also Fig, 15.5

to themsalves. The only arrangement which shows neutral c(.]uilihriurr? is .that with
hJL -= 0-281 (I'ig. 2.8). The vortex street moves with a velocity «, W]!lch is smn'»lle{{
than the flow velocity U7 in front of the body. It can l).c reg?:mrde(l asa lngh!y 1rle.allze(
picture of the motion in the wake of the body. The kinetic energy contained in the
velocity ficld of the vortex street must be continua.]ly qre:}ted, as the body moves
through the fluid. On the basis of this representation it is ppsmble to (le.duce a}r:
expression for the drag from the perfect-fluid theory. Its magnitude per unit lengt

of the eylindrical body is given by

2
u nw
D=gUh|2:83 7 _1',‘2('0‘)1'

The width k, and the veloeity ratio #/I7 must be known from experiment.

More reeent experimental investigntions due to W, W. Durgin and others [13) nﬁtal)ll?l:?(l
that in an aceelerating vortex street the ratio of the longitudinal to the transverse spn(‘l‘ng 0l ) "lc
vortices changes considerably. As a result, the regular arrangement of vortices is transformed into

a turbulent wake.
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Fig. 2.6

Fig. 2.6. Instantaneous photograph of
flow with complete boundary-layer
separation in the wake of n circular
cylinder, after Prandtl-Tietjens {27]

Fig. 2.7. Kéarman vortex street, from
A. Timme [38]

Tig. 2.8. Streamlinesin a vortex strect
(R/l = 0-28). The fluid i at rest at
infinity, and the vortex street moves
to the left

Fig. 2.8

Circular cylinder. The frequency with which vortices are shed in a Kdrman vortex
street behind a circular cylinder was first extensively measured by I1. Blenk, 1), Fuchs
and L. Licbers [5]. A regular Kirman streeb is observed only i the range of
Reynolds numbers ¥ Dfv from about 60 to 5000. At lower Reynolds numbers
the walke is laminar and has the form visible in the ficst two photographs of 1ig. 1.6:
at higher Reynolds numbers there is complete turbulent mixing. Measurements
show that in the regular range given above, the dimensionless frequency,

—n—;l =S, (Strouhal number)
also known as the Strouhal number |37], depends only on the Revnolds namber.
This relationship is shown plotted in Fig. 2.9 which is bascd on measurements per-
formed by A. Roshko [32]; see also [15]. The experimental points which were ob.
tained with cylinders of different diameters 12 and at dilferent veloeitios V arrange
themscives well on a single curve. At the higher Reynolds numbers the Strouhal
number remains approximately constant at S — 0-21. This value of S, as seen from
Fig. 2.9, prevails up to a Reynolds number R = 2 x 105, that is in the suberitical
range (see also I'ig. 1.4). At higher Reynolds numbers, say around R = 08, a regular
vortex street does not exist. According to A. Roshko {31}, such a regular street
re-appears at extremely large Reynolds numbers (R > 3 10%) when the Strouhal
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Fig. 2.9. The Stronhal number, S, for the Karman vortex street in the flow past a circular cylinder
in terms of the Reynolds number, R. Measurements performed by A. Roshko [31, 32], H. 8. Ribner,
B. Etkins and K. K. Nelly {30], E. . Relf and L. F. G. Simmons [28] as well as G. W. Jones et al.
([8] of Chap. I). In the range R = 3 x 105 to 3 x 10° (supereritical regime with very low drag,
Fig 1.4) the K&rmén vortex street is no loger regular. It is only at R > 4 x 10° that a regulnr
pattern forms again; its Strouhal number is now higher at S = 0-26 to 0-30 compared with §
a~ 0-20at R = 103 to 3 x 105

number assumes values around S = 0-27. In this connexion the paper by P.W.Bear-
man [3a] may also be consulted. When the diameters of the cylinders are small and
the velocities are moderate, the resulting frequencies lie in the acoustic range. For
example, the familiar “acolian tones” emited by telegraph wires are bh}é result of
these phenomena. At a velocity of ¥ = 10 m/sec (30-48 ft/sec) and a wire of 2 mm
(0-079 in) in diameter, the frequency becomes n = 0-21 (10/0-002) = 1050 sec™?, and
the corresponding Reynolds number R &~ 1200.

Flat plate at zero incidence. The fact that a regular vortex street establishes it-
self, among others, behind slender bodies as well as in compressible streams has only
been cstablished recently by H. J. Heinemann et al. [18]. The photograph of TFig. 2.10
shows such a regular vortex street behind a flat plate at zero incidence for a Mach
number Mg == 0-61. The diagram in Fig. 2.11 contains a plot of the Strouhal number,
S = nd/V, formed with the plate thickness, d, in terms of the Mach number, but only
for the subsonic range M = 0-2 to 0-85. The diagram proves that here too S ~ 0-2,
as was the case for the circular eylinder in Fig. 2.9. The corresponding Reynolds
numbers, referred to the length of the plate, are in the range R = Vijy = 3 x 105 to
8 x 109 in which the flow is laminar. /

'

Two papers by C. C. Lin. [22] and U. Domm [11] concern themselves with
the theory of the Kairmén vortex street. The formation of a vortex pair behind a flat
plate in cross-flow at right angles to it has been investigated theoretically by E. Wede-
meyer [38a], whereas T. Sarpkaya [33b] conducted theoretical and experimental
studies for a plate arranged at a large angle of attack (see Fig. 4.2); in this connexion
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Fig. 2.10. Von KArman vortex streot behind Fig. 2.11. Strouhal number S = nd/V in
a flat plate at zero incidence at a Mach num- terms of the Mach number for the vortex
ber M = 0-61 and a Reynolds number R = street behind a flat plate at zero incidence,
Vifv = 65 x 10% after H. J. Heinemanu et after H. J. Heinemann et al. [18]

al. [18]. Length of plate ! = 60 mm, thickncss
ratio dfl = 0-05. Exposure time approx. 20
nanosec (20 x 10-9 sec)

an earlier paper by L. Rosenhead [32a] may also be f:onsulted. The reader may also
be interested to look up the text of a remark made by L. Prandtl on the occasion of a
lecture by K. Friedrichs (,,Bemerkung iiber die ideale Stromung um einen Kérper bei
verschwindender Zahigkeit' Lectures on aerodynamics and allied subjects, Aachen
1929, Springer, Berlin 1930, pp. 51, 52). ‘

Scparation. The boundary-layer theory suceceds'in this manner, i.e. with the aid
of the explanation of the phenomenon of separation; in throwing light on the occur-
rence of pressure or form drag in addition to viscous drag. The danger of boundary-
layer separation exists always in regions with an adverse pressure gradient and the
likelihood of its occurrence increases in the case of steep pressure curves, i.e.
behind bodies with blunt ends. The preceding argument explains also why the
experimental pressure distribution shown in Fig. 1.11 for the casc of a slender
streamline body differs so little from that predicted for frictionless flow. The
pressure increase in the downstream direction is here so gradual, that there is no
separation. Consequently, there is no appreciable pressure drag and the total drag
consists mainly of viscous drag and is, therefore, small.

The streamlines in the boundary layer near separation are shown diangrammatic-
ally in Fig. 2.12. Owing to the reversal of the flow there is a considerable thickening
of the boundary layer, and associated with it, therc is a flow of boundary-layer
material into the outside region. At the point of separation one streamline inter-
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S — point of separation

Tig. 2.12. Diagrammatic represen-
tation of flow in the boundary
layer near a point of separation

Fig. 2.13. Flow with scparation in
a highly divergent channel, from
Prandtl-Tietjens [27]

Fig. 2.14. Flow with boundary-
layor suction on upper wall of
highly divergent. channel

Tig. 2.15. Flow with boundary-
lnyer suction on both walls of
highly divergent channel
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sects the wall at a definite angle, and the point of separation itself is determined by
the condition that the velocity gradient normal to the wall vanishes there:

u :
(aé)m” =0 (separation). (2.7)

The precise location of the point of separation can be determined only with the aid
of an exact caleulation, i. ¢, by the integration of the boundary.-layer cquations.

Separation, as described for the ease of a cireular cylinder, can also ocecur in
a bighly divergent channel, Fig. 2.13. In front of the throat the pressure decreases
in the direction of flow, and the flow adheres completely to the walls, as in a frictionless
fluid. Mowever, behind the throat the divergence of the channel is so large that the
boundary layer becomes separated from both walls, and vortices are formed. The
stream fills now only a small portion of the cross-sectional area of the channel. MTow-
ever, separation is prevented if boundary-layer suction is applicd at the wall (Figs.
2.14 and 2.15).

The photographs in Figs. 216 and 2.17t prove that the adverse pressure
gradient together with friclion near the wall determine the process of separation
which is independent of such other circumstance as e. g. the curvature of the wall.
The first picture shows the motion of a fluid against a wall at right angles to it (plane
stagnation flow). Along the streamline in the plane of symmetry which leads to the
stagnation point there is a considerable pressure increase in the direetion of flow. No
separation, however, oceurs, because no wall friction is present. There is no separation
near the wall, either, because here the flow in the boundary layer takes place in the
direction of decreasing pressure on both sides of the plane of symmetry. If now a thin
wall is placed along the plane ofsymmcbry at right angles to the first wall, Fig. 2.17,
the new boundary layer will show a pressure increase in the direction of flow.
Consequently, separation now oceurs near the plane wall. The incidence of separation
is often rather sensitive to small changes in the shape of the solid body, particularly
when the pressure distribution is strongly affected by this change in shape. A very
instructive example is given in the pictures of Fig. 2.18 which show photographs
of the flow field about a model of a motor vehicle (the Volkswagen delivery van),
[23, 35). When the nosc was flat giving it an angular shape (a), the flow past the
fairly sharp corners in front caused large suction followed by a large pressure increase
along the side walls. This led to complete separation and to the formation of a wide
wake behind the body. The drag coefficient of the vehicle with this angular shape
had a valuae of ), = 0-76. The large suction near the front end and the separation
along the side walls were eliminated when the shape was changed by adding the
round nose shown at (b). Simultancously, the drag coefiicient became markedly
smaller and had a value of Cp = 0-42. Further roscarch on such vchicles have been
performed by W. H. Hucho [19] for the case of a non-symmetric stream.

t Fig. 2.16. and 2.17. have been taken from the paper. “Stromungen in Dampfkesselanlagen”
by H. Foettinger, Mitteilungen der Vereinignod ARAREE: Kesselbesitzer, No. 73, p. 151 (1939).
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Tig. 2.17. Decelerated stagnation flow with

i Free stagnation flow without sopa- )
o ot by For g separation, as photographed by Foettinger

ration, as photographed by Foettinger

(a) Angular nose -
e
REE A
separation
(b) Round nose
— :;:::: . f:z 042
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Fig. 2.18. Tlow nhout a model of a motor vehicle (Volkswagen delivery van), after . Moell(;_r
[2.‘?]. u.) Angular nose with separated flow along the whole of the side wall nnd' large drag (():0;2-
ficient (C')y = 0-76); b) Round nose with no separation and small drag coofficient (Cp = }
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Separation is also important for the lifting properties of an aerofoil. At small
incidence angles (up to about 10°) the flow does not separate on either side and
closely approximates frictionless conditions. The pressure distribution for such a ease
(“sound” flow, Fig. 2.190) was givon in Iig. 1.14. With ineroasing incidenen thore
is danger of separation on the suction side of the aerofoil, beenuso the pressure in.
crease becomes steeper. For a given angle of incidence, which is nbout 15°, separation
fiually occurs. The separation point is located fairly closely behind the leading cdge.
The wake, Fig. 2.19b, shows a large “dead-water” area. The frictionless, lift-creating
flow pattern has become disturbed, and the drag has become very large. The be-
ginning of separation nearly coincides with the oceurrence of maximum lift of the
aerofoil.

Structural aerodynamics. Flow around land-based bluff bodies, such as struc-
tures and buildings, is considerably more complex than flow around streamlined bodies
and aircraft. The principal cause of complication is the presence of the ground and
the shear created in the turbulent wind as a consequence. The interaction between
the incident shear flow and the structure produces coexisting static and dynamic loads
[8, 9, 10]. The fluctuating forces produced by vortex formation and shedding can
induce oscillations in the structures at their natural frequencics.

"The flow patterns observed on a detached rectangular building is shown schemadti-
cally in Tig. 2.20. In front of the building there appears a bound vortex which arises
from the interaction of the boundary layer in the sheared flow (dV/dz > 0) and the
ground. There is, furthermore, strong vortex shedding from the sharp corners of the
building and a complex wake is created behind it. So far no theoretical methods have
been developed to cope with this extremely complicated flow pattern. It is, therefore,
necessary to resort to wind-tunnel studies with the aid of adequately scaled models.

Tig. 2.19a.b.  Flow around an aerofoil,
after Prandtl-Tictjens[27]. a) ‘sound’ flow,
b) flow with separation
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Fig. 2.20. Overall view of

flow pattern (schematic)
around a rectangular struc-
ture [34]. a) Side view with
foreward bound vortex in
the stagnation zone and a
separated roof boundary
layer; b) upwind face and
vortex shedding from the
the windward corner of the

roof

Fig. 2.21. Acrofoil and cir-
cular cylinder drawn in
such relation to each other
as to produce the same drag
in parallel flows (parallel to
axis of symmetry of aerofoil)
of the same velocity. dero-
foil: Laminar aerofoil NACA
634 — 021 with Jlaminar
boundary layer. Drag coef-
ficient cpy = 0006 at R;
= 10% to 107, Fig. 17.14.
Circular  cylinder: Drag
coefficient cp = 10 at Ra
= 10 to 105; Fig. 1.4. Thus
the ratio of the chord of the
aerofoil, I, to the diameter,
d, of the cylinder is ljd =
1:0/0-006 = 167

Fig. 2.22.  The Reynolds
dve experiment. Flow in
water made visible by the
injection of a dye, after W.
Dubs {12]; a) laminar flow,
4R':—-: 1150; b} turbulent fow,
R = 2520
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To conclude this section, we wish to discuss a particularly telling cxample of how
effectively it is possible to reduce the drag of a body in a stream when the separation
of the boundary layer is completely eliminated and when, in addition, the body itself
is given a shape which is conducive to low resislance. Fig 2.21 illustrates the elfeet of
a favorable shape (streamline body) on drag: a symmeurie nerofoil and a ecircular
cylinder (thin wire) have been drawn here to a relative seale which assures equal drag
in streams of cqual velocity. The cylinder has a drag cocfficient Cp ~ 1 with respect
to its frontal area (sce also Fig. 1.4). On the other hand, the drag cocfficient of the nero.
foil, referred to its cross-sectional area, has the very low value of (7, = 0-006. The
extremely low drag of the acrofoil is achicved ns o result of a carefully chosen profile
which assures that the boundary layer remains laminar over almost the whole of its
wetted length (laminar aerofoil). Irr this connexion, Chap. X VI and, especially, Ifig.
17.14, should be consulted.

c. Turbulent flow in a pipe and in a boundary layer

Measurements show that the type of motion through a circular pipe which was
calculated in Section 1d, and in which the velocity distribution was parabolic,
exists only at low and moderate Reynolds numbers. The fact that in the laminar
motion under discussion fluid laminae slide over each other, and that there aro no
radial velocity components, so that the pressure drop is proportional to the first
power of the mean flow velocity, constitutes an essential characteristic of this type
of fluw. This characteristic of the motion can be made clearly visible by introducing
a dye into the stream and by discharging it through a thin tube, Fig. 2.22. At the
moderate Reynolds numbers associated with lnminar flow the dye is visible in
the form of a clearly defined thread extending over the whole length of the pipe,
Fig. 2.22a. By increasing the flow velocity it is possible to reach a stage when the
fluid particles cease to move along straight lines and the regularity of the motion
breaks down. The coloured thread becomes mixed with the fluid, its sharp outline
becomes blurred and eventually the whole cross-section becomes coloured, Fig. 2 291,.
On the axial motion there are now superimposed irregular radial fluetuations which
effect the mixing. Such a flow pattern is called turbulent. The dye experiment was
first carried out by 0. Reynolds [29], who ascertained that the transition from
the laminar to the turbulent type of motion takes place at a definite value of the
Reynolds number ({critical Reynolds nmnber). The actual value of the critical
Reynolds number depends further on the details of the experimental arrangement,
in particular on the amount of disturbanee sufferod by the fluid before entering
the pipe. With an arrangement. which is as free from disturbances as possible critical
Reynolds numbers ([ v)e,yy exceeding 104 can be attained {#t = denotes the mean
velocity averaged over the cross-sectional arca). With a sharp-cdged entrance the
critical Reynolds number becomes approximatcly '

(7‘;4)"” = R ~ 2300 (pipo) . (2.8)
This value can be regarded as the lower limit for the critical Reynolds sumber
below which even strong disturbances o not cause the flow to become turbulent.
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In the turbulent region the pressure drop 'becomes appl:())(lrrllateliy pmportl:‘r:::
to the square of the mean flow velocity. Ix‘n this case a consule.ralm )lly arglert}':r‘esi (‘,
difference is required in order to pass a fixed quantity of fluic It. |r0lug \ o(,ml:npo,,(
as compared with laminar flow. This follows from the fact ‘t.hat t m‘p:;:nomq,igl‘m(.(\
turbulent mixing dissipates a large quantity o‘f energy wln.ch c.'mlst,s hm rfho :’(\l(,)_,
to low to increase considerably. Furthermore, in the case of turbu m?:/. ow '1. ,nil,mr
city distribution over the cross-sectional area is much more oven t 1}(:'11}111 ar inar
flow. This circumstance is also to be explained by turbu.lent nixing w 1((:11“canse e{ar
exchange of momentum between the layers near t}'l(’, axis of t'hc tubel.an «\osel:; o
the walls. Most pipe flows which are encountered in engineering ap!) ;ancTe‘s ol(‘;:ws s
such high Reynolds numbers that turbulent motion pre\.rm.ls as a 1\;((3).( e
turbulent motion through pipes will be discussed in detail in Chap. X.

In a way which is similar to the motion through a pipe, the ﬂqxv in a bf?i‘l{]diﬁy
a wall also becomes turbulent when the external veloc",lty is sufficiently
' ations into the transition from Jaminar to turbulent
arried out by J. M. Burgers [6] .a'ml B. G.
van der legge Zijnen [17) as well as by M. Hansen [16]. Thel t,r:;nsht,.mn rf]rlcl))rl?3
Jaminar to turbulent flow in the boundary layer becomes most ¢ ;‘ar ybh 1sclzee“in
by a sudden and large increase in the boundary-lt.wyer thickness anc 1}n e sh t (‘Og_
stross near the wall. According to equ. (2.1), with I repl._mg:g(i_l?y the current ¢
ordinate z, the dimensionless boundary-layer thickness 6[]/ vz{Us be(ltomgs Eqnsfé(m;;
for laminar flow, and is, as seen from eqn. (2.1a), apprm.umately equa tt(; o.R lg.no.lds
contains a plot of this dimensionless boundary-layer -thlckncss. agams:: 1 lek): olds
number Uy, zfv. At R, > 3-2 X 10° a very sharp increase 1s clearly visible,
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an identical phenomenon is observed in a plot of wall shearing stress. The sudden
inercase in these quantities denotes that the flow has changed from laminar to
turbulent. The Reynolds number R, based on the eurrent length = is related to
the Reynolds number Ry = U, 8/r based on the boundary-layer thickness through
the equation

Ry -5 /R, .
as scen from eqn. (2.1a). Hence to the eritical Reynolds number

U=
Ry erie = ( - >m[ =32-10% (plate)

»

there corresponds R, .,y &~ 2800. The boundary layer on a plate is laminar near the
leading edge and becomes turbulent further downstream. The abscissa Ty Of the
point of transition can be determined from the known valuc of R, ,,,. In the case
of a plate, as in the previously discussed pipe (low, the numerical value of R, i
depends to a marked degree on the amount of disturbance in the external flow, and
the value R, ,;, = 3-2 X 10° should be regarded as a lower limit. With exceptionally
disturbance-free external flow, values of R, ,;, — 108 and higher have been attained.

A particularly remarkable phenomenon connceted with the transition from
laminar to turbulent flow ocours in the case of blunt bodies, such as cireular cylinders
or spheres. It will be seen from Figs. 1.4 and 1.5 that the drag coefficient of a circular
cylinder or a sphere suffers a sudden and considerable decrease near Reynolds
numbers V Dy ofabout 5 x 10%0r 3 x 105 respectively. This fact was first observed
on spheres by G. Eiffel [14]. It is a consequence of transition which causes the
point of separation to move downstream, because, in the casc of a turbulent boundary
layer, the accelerating influcnce of the external flow extends further due to turbulent
mixing. Hence the point of separation which lies near the equator for a laminar
boundary layer moves over a considerable distance in the downstream dircetion.
In turn, the dead area decreases considerably, and the pressure distribution becomes
more like that for frictionless motion (Fig. 1.11). The decrease in the dead-water
region considerably reduces the pressure drag, and that shows itself as a jump in
the curve C), = f(R). L. Prandtl [26] proved the corrcctness of the preceding
rcasoning by mounting a thin wire ring at a short distance in front of the cquator
of a sphere. This causes the boundary layer to become artificially turbulent at a lower
Reynolds number and the decrease in the drag cocfficient takes place carlier than
would otherwise be the case. Figs. 2.24 and 2.25 reproduce photographs of flows
which have been made visible by smoke. They reprcsent the suberitical pattern
with a large value of the drag coefficient and the supercritical pattern with a small
dead-water area and a small value of the drag coefficient. The supercritical pattern
was achieved with Prandtl’s tripping wire. The preceding experiment shows in
a convincing manner that the jump in the drag curve of a circular cylinder and
sphere can only be interpreted as a boundary-layer phenomenon. Other bodies
with a blunt or rounded stern, (e. g. elliptic cylinders) display a type of rolationship
botween drag coefficient and Reynolds number which is substantially similar. With
increasing slenderness the jump in the curve becomes progressively less pronounced.
For a streamline body, such as that shown in Fig. 1.12 there is no jump, becsuse
no appreciable separation occurs; the very gradual pressure inerease on the hack
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of such bodies can be overcome by the boundary layer wit.rhoult separation. As we
shall also sce Jater in greater detail, the pressure distril?ultlon in the faxt.ernal flow
exerts a deeisive influence on the position of the transition point. The boun(lf.xry
layer is laminar in the region of pressure decrease, i.e. roughly from the tlcadmg
edge to the point of minimum prcssure,'an(l becomes .turbulent,, n; ‘most cases,
from that point onward throughout the region of pressure inerease. Fn this (Fornif:x‘l.on
it is important to state that separation can o‘nly be avoided in regions of mcmlnsmg
pressure when the flow in the boundary layer is turbulent. A laminar boundary layer,

Fig. 2.24. Flow past. a sphere at a suberitical Tig. 2.25. Flow past a sphere M,‘:\. supercri-
Reyvnolds number; from Wieselsherger {39 tical Reynolds number; from \VIf‘HCINI)(‘rg.l‘l‘
. l ' 7 [39). The supercritical flow pattern is achie-
ved by the mounting of a thin wire ring

(tripping wire)

as we shall sce later, can support only a very small pressure rise so that scpnrfthon
would occur even with very slender bodies. In particulz}r,.thls remark‘ n]sg applies to
the flow past an aerofoil with a pressure distrribution.sum.lar to that in Fig. 1.14. In
this casc separation is most likely to oceur on the suction sulle, A smoot..h flow pattern
around an acrofoil, conducive to the crcation of lift, is possible only with a turbulo.nt
boundary layer. Summing up it may be stated that the small r'lmg of slender bodies
as well as the lift of acrofoils are made possible through the existence of a turbulent

boundary layer.

Boundary-layer thickness: Generally speaking, the thickness n.f a turbulctnt
boundary layer is larger than that of a laminar boundary ‘lay.er owmlg tt()) grcz;x or
energy losses in the former. Near a smooth flat plate at zero incidence lt 1e1. oun]ary
laycr‘incrcaﬂcs downstream in proportion to %8 (x = distance fro.m eading ec ge).
1t will be shown later in Chap. XXI that the boundary-layer thickness variation
in turbulent flow is given by the equation

f
—1/5
S~ 037 (”’"l) — 037 (R)~ V5 (2.9)
v
Awhich corresponds to eqn. (2.2) for laminar flow. Table 2.1 gives values for the

boundary-layer thickness caleulated from eqn. (2.9) for several typical cases of air
and water flows.
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Table 2.1.  Thickness of boundary layer, 8, at trailing edge of flat plaie at zero incidence in
parallel turbulent flow

Uoge = free stream velocity; 1 = length of plate; » = kinematle viscosily

Voo l p _ Usl P

[ft/sec) [t} ! v [in]

Air 100 3 20 x 108 0-73

v — 150 X 10 f42fsco 200 3 40 x 108 0-64
200 5 20 x 107 2:30 .

500 25 83 x 107 2-90

750 25 1-25 % 109 268

Water 5 5 23 x 108 119

v =11 x 10~ ft2fscc 10 15 1-35 x 107 2-52

25 150 34 x 100 13:1

50 500 23 % 10° 29-8

Methods for the prevention of scparation: Scparation is mostly an undesirable
phenomenon becausc it entails large encrgy losses. For this reason methods have boon
devised for the artificial prevention of separation. The simplest method, from the
physical point of view, is to move the wall with the stream in order to reduce the
velocity difference between them, and hence to remove the cause of boundary-layer
formation, but this is very difficult to achieve in enginecring practice. However,
Prandtl{ has shown on a rotating circular cylinder that this method s very cilective.
On the side where the wall and stream move in the same direction separation is com-
pletely prevented. Moreover, on the side where the wall and stream move in opposite
dircctions, separation is slight so that on the whole it is possible to obtain a good
experimental approximation to perfect flow with circulation and a large lift.

Another very effective method for the prevention of scparation is houndary-
layer suction. In this method the decclerated fluid particles in the boundary layer
are removed through slits in the wall into the interior of the body. With sufficiently
strong suction, separation can be prevented. Boundary-layer suction was used
on a circular cylinder by L. Prandtl in his first fundamental investigation into
boundary-layer flow. Separation can be almost completely eliminated with suction
through a slit at the back of the circular eylinder. Instances of the effect of suction
can be seen in Figs. 2.14 and 2.15 on the example of flows through a highly
divergent channel. Fig. 2.13 demonstrates that without suction there is strong
separation. Fig. 2.14 shows how the flow adhercs to the one side on which suc.
tion is applied, whereas from Fig. 2.15 it is seen that the flow completely fills the
channel cross-section when the suction slits are put into operation on both sides. In the
latter case the streamlines assume a pattern which is very similar to that in frictionless
flow. In later years suction was suceessfully used in acroplane wings to increase the
lift. Owing to suction on the upper surface near the trailing edge, the flow adheres

t Prandtl-Tietjens: Hydro- and Aerodynamics. Vol. [1, Tables 7, 8 and 9.
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to the aerofoil at considerably larger incidence angles than would otherwise be the
case, stalling is delayed, and much larger maximum-lift values are achieved [36].

After having given a short outline of the fundamental physical principles of
fluid motions with very small friction, i. c. of the boundary-layer theory, we shal!
proceed to develop a rational theory of these phenomena from the equations of
motion of viscous fluids. The description will be arranged in the fo!lowmg way .Wo,
shall begin in Part A by deriving the general Navier-Stokes equations frofn which,
in turn, we shall derive Prandtl’s boundary-layer equations with the aid of t!le
simplifications which can be introduced as a consequence of the small valuc§ of vis-
cosity. This will be followed in Part B by a description of the methods for th.e integra-
tion of these cquations for the case of laminar flow. I_n Part C we shall dlscusg Qle
problem of the origin of turbulent flow, i. e. we shall discuss the process of transition
from laminar to turbulent flow, treating it as a problem in the stability of laminar
motion. Finally, Part D will contain the boundary-layer theory for completely
developed turbulent motions. Whereas the theory of laminar b.oundar.y layers can
be treated as a deductive soquence based on the Navier-Stokes diffecentinl equations
for viscous fluids, the same is not, at present, possible for turbulent flow, because the
mechanism of turbulent flow is so complex that it cannot be mastered by pur(?ly
theoretical methods. For this reason a treatise on turbulent flow must draw hezwll:v
on experimental results and the subject must be presented in the form of a semi-

empirical theory.
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CIMAPTER 111

Derivation of the cquations of motion of
a compressible viscous fluid

(Navier-Stokes cquations)

a. Fundamental equations of motion and continuity applied to fluid flow

We shall now proceed to derive the equations of motion of a compressible,
viscous, Newtonian fluid. In the general case of three-dimensional motion, the flow
field is specified by the velocity vector

w=iu-{-jv-|-kw

where », v, w are the three orthogonal components, by the pressure p, and by the
density g, all conceived as functions of the coordinates z, ¥, 2, and time (. For the
determination of these five quantities there exist five cquations: the continuity
equation (conservation of mass), the three equations of motion (conservation of
momentum) and the thermodynamic equation of state p = fle).:

The equation of continuity expresses the fact that for a unit volume there is a
balance between the masses entering and leaving per unit time, and the change in
density. In the case of non-steady flow of a compressible fluid this condition leads
to the cquation:

D . 7/ .
ﬁ(i’ + o divaw = as + divipw) =0, (3.1)

whereas for an incompressible fluid, with @ = const, the equation of continuity
assumes the simplified form
divw =0 . (3.1a)

The symbol Dg/Dt denotes here the substantive derivative which consists of the
local contribution (in non steady flow) dp/ot, and the convective contribution (due
to translation), w.grad .

t In the Sixth Edition this chapter has been revised by the Translator at the Author’s invitation.

1 If the equation of state contains temperature as an additional variable, a further equation is
supplied by the principle of the conservation of energy in the form of the First Law of Thermo-
dynamies; ¢f. Chap. XII.



