Newtonian fluid flow in a slightly tapered tube

A fluid (of constant density \(\rho \)) is in incompressible, laminar flow through a tube of length \(L \). The radius of the tube of circular cross section changes linearly from \(R_0 \) at the tube entrance \((z = 0)\) to a slightly smaller value \(R_L \) at the tube exit \((z = L)\).

Such a flow occurs when a lubricant flows in certain lubrication systems (It means high viscosity, and so low Reynolds number, \(\text{Re} \sim 1 \)).

![Figure. Fluid flow in a slightly tapered tube.](image)

Using the lubrication approximation, determine the mass flow rate vs. pressure drop \((w \text{ vs. } \Delta P)\) relationship for a Newtonian fluid (of constant viscosity \(\mu \)).

Solution

Step. Hagen-Poiseuille equation and lubrication approximation:

The mass flow rate vs. pressure drop \((w \text{ vs. } \Delta P)\) relationship for a Newtonian fluid in a circular tube of constant radius \(R \) is

\[
 w = \frac{\pi \Delta P R^4 \rho}{8 \mu L} \quad (1)
\]

The above equation, which is the famous Hagen-Poiseuille equation, may be re-arranged as

\[
 \frac{\Delta P}{L} = \frac{8 \mu w \rho}{\pi R^4} \quad (2)
\]

For the tapered tube, note that the mass flow rate \(w \) does not change with axial distance \(z \). If the above equation is assumed to be approximately valid for a differential length \(dz \) of the tube whose radius \(R \) is slowly changing with axial distance \(z \), then it may be re-written as

\[
 -\frac{dP}{dz} = \frac{8 \mu w}{\rho \pi} \frac{1}{[R(z)]^4} \quad (3)
\]

Felice De Santis
The approximation used above where a flow between non-parallel surfaces is treated locally as a flow between parallel surfaces is commonly called the lubrication approximation because it is often employed in the theory of lubrication. The lubrication approximation, simply speaking, is a local application of a one-dimensional solution and therefore may be referred to as a quasi-one-dimensional approach.

Equation (3) may be integrated to obtain the pressure drop across the tube on substituting the taper function $R(z)$, which is determined next.

Step. Taper function

As the tube radius R varies linearly from R_0 at the tube entrance ($z = 0$) to R_L at the tube exit ($z = L$), the taper function may be expressed as $R(z) = R_0 + (R_L - R_0) z / L$. On differentiating with respect to z, we get

$$
\frac{dR}{dz} = \frac{R_L - R_0}{L} \quad (4)
$$

Equation (3) is readily integrated with respect to radius R rather than axial distance z. Using equation (4) to eliminate dz from equation (3) yields

$$
(-dP) = \frac{8 \mu w}{\rho \pi} \frac{L}{R_L - R_0} \frac{dR}{R^4} \quad (5)
$$

Integrating the above equation between $z = 0$ and $z = L$, we get

$$
\frac{P_L}{P_0} = \int (-dP) = \frac{8 \mu w}{\rho \pi} \frac{L}{R_L - R_0} \int \frac{R_L dR}{R^4} \quad (6)
$$

$$
\frac{P_0 - P_L}{L} = \frac{8 \mu w}{\rho \pi} \frac{1}{3 (R_L - R_0)} \left(\frac{1}{R_0^3} - \frac{1}{R_L^3} \right) \quad (7)
$$

Equation (7) may be re-arranged into the following standard form in terms of mass flow rate:

$$
w = \frac{\pi \Delta P}{8 \mu L} R_0^4 \rho \left[\frac{3 (\lambda - 1)}{1 - \lambda^3} \right] = \frac{\pi \Delta P}{8 \mu L} R_0^4 \rho \left[\frac{3 \lambda^3}{1 + \lambda + \lambda^2} \right] \quad (8)
$$

where the taper ratio $\lambda \equiv R_L / R_0$. The term in square brackets on the right-hand side of the above equation may be viewed as a taper correction to equation (1).