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CIMAPTER 111

Derivation of the cquations of motion of
a compressible viscous fluid

(Navier-Stokes cquations)

a. Fundamental equations of motion and continuity applied to fluid flow

We shall now proceed to derive the equations of motion of a compressible,
viscous, Newtonian fluid. In the general case of three-dimensional motion, the flow
field is specified by the velocity vector

w=iu-{-jv-|-kw

where », v, w are the three orthogonal components, by the pressure p, and by the
density g, all conceived as functions of the coordinates z, ¥, 2, and time (. For the
determination of these five quantities there exist five cquations: the continuity
equation (conservation of mass), the three equations of motion (conservation of
momentum) and the thermodynamic equation of state p = fle).:

The equation of continuity expresses the fact that for a unit volume there is a
balance between the masses entering and leaving per unit time, and the change in
density. In the case of non-steady flow of a compressible fluid this condition leads
to the cquation:

D . 7/ .
ﬁ(i’ + o divaw = as + divipw) =0, (3.1)

whereas for an incompressible fluid, with @ = const, the equation of continuity
assumes the simplified form
divw =0 . (3.1a)

The symbol Dg/Dt denotes here the substantive derivative which consists of the
local contribution (in non steady flow) dp/ot, and the convective contribution (due
to translation), w.grad .

t In the Sixth Edition this chapter has been revised by the Translator at the Author’s invitation.

1 If the equation of state contains temperature as an additional variable, a further equation is
supplied by the principle of the conservation of energy in the form of the First Law of Thermo-
dynamies; ¢f. Chap. XII.
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The equations of motion are derived from Newton’s Second Law, which states
that the product of mass and acceleration is equal to the sum of the external forces
acting on the body. In fluid motion it is necessary to consider the following two
classes of forces: forces acting throughout the mass of the body (gravitational forces)
and forces acting on the boundary (pressure and friction). 1f F = g g denotes the
gravitational force per unit volume (g = vector of acceleration due to gravity) and
P denctes the force on the boundary per unit volume, then the equations of motion
can be written in the following vector form

o P (3.2)

with
F=iX+jY4kZ body force (3.3)

and
P=iP,+jP,+ kP, surface force. (3.4)

The symbol D/ Dt denotes here the substantive acceleration which, like the substan-
tive derivative of density, consists of the local contribution (in non-steady flow)
awfot, and the convective contribution (due to translation) dew/dt = (wsgrad) w

D cw duw
o= & Toa

The body forces are to be regarded as given external forces, but the surface forees
depend on the rate at which the fluid is streined by the velocity field present in it.
The system of forces determines a state of stress, and it is now our task to indicate
the relationship between stress and rate of strain, noting that it can only be given
empirically. In our present derivation weshall restrict attention todsotropic, Newtonian
fluids for which it may be assumed that this relation is a linear one. All gases and
many liquids of interest in boundary-layer theory, in particular water, belong to this
class. A fluid is said to be isotropic when the relation between the components of
stress and those of the rate of strain is the same in all directions; it is said to be
Newtonian when this relation is linear, that is when the fluid obeys Stokes’s law of
friction. In the case of isotropie, clastic solid bodies, experiment teaches that the
state of stress depends on the magnitude of strain itself, most engineering materials
obeying Hooke’s linear law which is somewhat analogous-to Stokes’s law. Whereas
the relation between stress and strain for an isotropic elastic solid involves two con-
stants which characterize the propertics of a given material (e. g. elastic modulus and
Poisson’s ratio), the relation between stress and rate of strain in an isotropic fluid
involves a single constant (the viscosity, u) as long as velaxation phenomena do not

occur within it, as we shall see in Sec. 111e. /
i

1 In order Lo express the vector (u~grad) r in an arbitrary system of coordinates, the following
general relation should be used

(w-grad) w = grad | w? — w X curl
where w0? = w -
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b. General stress system in a deformable body

In ord?r to writo down expressions for the surface forces acting on the boundary
let us imagine a small parallepiped of volume dV = dz dy dz isolnted ins(.xmlmwmm‘l‘);
from tl.xe body of the fluid, Fig. 3.1, and let its lower left-hand vertex coincide with
the point «, ¥, 2. On the two faces of arca dy - dz which are perpendicular to the

z-axis there act two resultant stresses (vectors = surface force per unit area):

P, .
p: and p, - 45 Az respectively . (3.5)

7

Tig. 3.1.  Derivation of the expressions
for the stress tensor of an inhomogenecous
stress system and of its symmetry in the
absence of a volumetric distribution of
local moments

(Subscriptx denotes that', the stress vector acts on an elementary plane which is
perpendicular to the x-direction.) Similar terms are obtained for the faces dx - dz

and dz - dy which are perpendicular to the y- and z-axcs respectively. Hence the three
net components of the surface force are:

. . (”
plane | dircetion z: % - d - dy - dz
ox
op
IR . .

o e v E oy dz - dy-dz
op,

o oo 21 *511 cdz-dy-dz.

and the resultant surface foree P per unit volume is, therefore, given by

ap ap ap :
> — _* Y :
P = ar + y + "3z (3.6)

The f]uantities Px Py, P. are vectors which can be resolved into components per-
pendm.ulzu: to each face, i.e., into normal stresses denoted by o with a suitable
§ubscr1pt }ndxcating the direction, and into components parallel to each face, i. e.
into shearing stresses denoted by v. The symbol for a shearing stress will be provided
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with two subscripts: the first subscript indicates the axis to which the face is per-
pendicular, and the second indicates the direction to which the shearing stress is
parallel. With this notation we have

Pr=100; + jTzy+ ks
Py =it -+ jo, +kty 3.1)
P = irzz “}'jrzy + qu .

The stress system is seen to require nine scalar quantities for its description. These

nine quantities form a stress tensor. The set of nine components of the stress
tensor is sometimes called the stress matrix:

[ Tzy Tz
I = Tyz Oy Tyz . (38)
177 Tay 0z

The stress tensor and the corresponding matrix are symmetric, which means
that two shearing stresses with subscripts which differ only in their order are equal.
This can be demonstrated with reference to the equations of motion of an element
of fluid. In general, its motion can be separated into an instantaneous translation and
an instantancous rotation, and only the latter needs to be considered for our purpose.
Denoting the instantaneous angular acceleration of the element by w(w,, ®,, @,),
we can write for the rotation about the y-axis that

w, dI,= (v, dy d2) dz — (1., dz dy) dz = (r,, — 1,,) dV

where d/y is the elementary moment of inertia about the y-axis. Now the moment
of inertia, d7, is proportional to the fifth power of the linear dimensions of the pa-
rallelepiped, whereas its volume, d V, is proportional to their third power. On contract-
ing the element to a point, we notice that the left-hand side of the preceding equation
vanishes faster than the right-hand side. ITence, ultimately,

—_T ==

Try yr

if o, is not to become infinitely lnrge. Analogous equations can be written for the
remaining two axes, and the symmetry of the stress tensor can thus be demonstrated.
It is clear from the argument that the stress tensor would cease to be symmetric
if the fluid developed a local moment which was proportional to its volume, dV.
The latter may occur, for example, in an electrostatic field.

Owing to the fact that
(3.9)

Toy = Tyas Tz ™ Tazs Tyz = Tz s

the stress matrix (3.8) contains only six different’stress components and becomes
symmetrical with respect to the principal diagonal:

=z, ay, Ty | - (3.10)
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The surface force per unit volume can be caleulated from eqns. (3.6), (3.7), and (3.10)
and becomes ’ ’ -

do 724 or
» z
P=i (»5; + —-5;” + 5;’) ----- comp. z
or, do ot
. TS L3 I
+J ( 3 |- 3y + 5;) comp. ¥ (3.10a)
o, ot do,
| -=22 S LA EERC I B \
+A<ax By 1 a:) comp. z
S N—— S———
face face face
yz 2z ry

'Introducing the expression (3.10a) into the equation of motion (3.2), and resolving
mto components we have:

Du oo, or,, ar,,
e =X+ ("55-' T ta )
Dv ar do ar
e 5&’=Y+<az”+7a;,"‘+ ) @-11)

Dw ar ar o
— = 7 L -y LB
e i +(az+a,,+az)

If th.e ﬂ.uid is “frictlzonless" all shearing stresses vanish: only the normal stresses
remain in the equation, and they are, moreover, equal. Their negative is defined
as the pressure at the point z, ¥, z in the fluid:

Toy = Ty = Ty: = 0

Oz =0y =0, =—2p

In such a hydrostatic stress system, the fluid pressure is equal to the arithmetical
mean of the normal stresses taken with a negative sign. Since measurements which
lead to the establishment of the thermodynamic equation of state are performed
under such conditions, the fluid being at rest, this pressure is identical with theo
therm{)dynumin pressure in the equation of state. It is conveniont to introduce
the arithmetical mean of the three normal stresses — their sum being called the
trace f’f the stress tensor — as a useful numerical quantitiy in tho case of a viscons
fluid in a state of motion also. It is still called the pressure, but its relation to the
thermodynamic pressure requires further investigation. Although it then ceases to
be equal to a particular stress which is normal to the surface, it has the property
of .bel‘ng invariant with respect to transformations of the system of coordinates
as it is an invariant of the stress tensor, being defined as ,

0z + oy + 0) =—07p. (3.12)

We shall see in Sec. Ile that it remains equ

| al to the thermodynamic pressure in
the absence of relaxation.
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The system of the three cquations (3.11) conminti the six stresses o,,0,,0,,
Tayr Tewr Tyz-  Lhe next task is to dctcrminc.the relation betwccn.them and the
strains so as to enable us to introduce the velocity components u, v, winto eqn. (3.11).
Before giving this relation in See. ITTd we shall investigate the system of strains
in greater detail.

c. The rate at which a fluid element is strained in flow

When a continuous body of fluid is made to flow, every element in it is, generally
speaking, displaced to a new position in the course of time. During this motion
elements of fluid become strained, and since the motion of the fluid is completely
determined when the velocity vector w is given as a function of time and position,
w = w(x,y,2,t), there exist kinematic relations between the components of the
rate of strain and this function. The rate at which an clement of fluid is strained
depends on the relative motion of two points within it. We, ther'cfore, consider the
two neighbouring points A and B which are shown in Fig. 3.2. Owing to the presence
of the velocity ficld, point A will be displaced to A" in time d¢ by a distance s =w de;
since, however, the velocity at B, imagined at a distance dr from A, is different,
point B will move to B’ displaced from B by's |- ds = (w0 - daw) dt. Morc'cxplicit_ly,
if the components of velocity have the values u, », w at A, then, at the nclghbourl.ng
point B, the velocity components will be given to first order by the Taylor-series

expansions

e ou ou
oy — A" O 1 1
n - du = - i dx - oy dy - o 2
v v on 113
v do =wv Fe da |- by dy - iz dz (3.13)
ow cw ow
Ut T S 4 - - 1z .
w - dw = 1w | o dx - oy dy - 5 2

Thus, the relative motion of point B with respect to A is described by the following
matrix of nine partial derivatives of the

local velocity field

du  ou  Ju
ox oy oz

v v Oy (3.13a)
oz oy oz

ow ow ¢w

ox ?)yq dz

Fig. 3.2. Relative displacement
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It is convenient to rearrange the expressions for the relative velocity components
du, dv, dw from eqn. (3.13) to the form

du = (&, de + &, dy 4 &, dz) -} (y dz — ¢ dy) ]
dv = (g, de - &, dy - ¢, d2) - (Cda — & dz) (3.14)
dio = (&,, da |- &, dy | ¢, dz) - (& dy — 9 dx), l

it being easy to verify that the new symbols have the following meanings

.. ou 1 (| o 1 fow  au) |
£, &, E - oo tla b oo =l o O
®Try Taz ox 2 (E‘x ! (')!/) T2 (61: ! Pz /)
s . . . 1 {du vy v 1 (ow v
&y o= fyr &y Eye 2 (6y + ;)_;) ’ Ay ) (31/ + oz ]
. . . I {ou dw 1 {ov ow dw
for Eoy & o ¥ o5 (3 a“y) W

(3.152)

1 {ow 2] 1 {ou dw . 1 {aov e
=5 el B = .= S — - . — o |- « ~
6 2 ((’)y dz ) ) n 2 (;’Z O ) s G s (E).z (,'/) . (J.l-)l))

It is noted that the matrix &, is symmetrie, so that

and

Eyz = ezy 3 €10 = €51 Ezy = Eyz 3 (3]50)
and that &, %, { are related to the components of the vector

w = curl w (3.15d)

Each of the new terms can be given a kinematic interpretation, and we now proceed
to obtain it.

Since we concentrate our attention on the immediate neighbourhood of point A,
and since interest is centred on the motion of B relative to A, we shall place point A
at the origin, and interpret dzx, dy, dz as the coordinates of point B in a Cartesian
system of coordinates. Tn this manner, the expressious in eqns. (3.14) will define
a field of relative velocities in which the components du, dv, dw are lincar functions
of the space coordinates. In order to understand the meaning of the different, terms
in the matrix (3.15a) and in eqns. (3.15b), we proceed to interpret them onc by one.

The diagram in TFig. 3.3 represents the field of relative velocities when all terms
except oufdx vanish on the assumption that fu/ox > 0. The relative veloeity of
any point B with respect to A is now

and the field consists of plancs x = const which displace themsclves uniformly
with a velocity which is proportional to the distance dx away from the plane z = 0.
An elementary parallelepiped with A and B at jts vertices placed in such a velocity
field will be distorted in extension, its face BC receding from AD with an increasing
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velocity. Thus &, represents the rate of elongation in the z-direction suflered by the
clement. Smnlurly, the additive terms £, = dv/0y and &, = dw/?z describe the rate
of elongation in the y- and z-directions, respectively.

i is now easy to visualize the distortion imparted to a fluid clement by the
simultancous action of all three diagonal elements of matrices (3.13a) or (3.15a).
The element expands in all three directions, and the change in the length of its
three sides produces a change in volume at a relative rate

on \ _
fae 4 32 dzadplay + 2 dya{az 4 5 doat) — dedyd:

— U y T J\ @
€= dz dy dz dt
u on ow .
— _ G T = 3.16
o o oo div aw, ( )

to first order in the derivatives. During this distortion, however, the shape of the
clement, described by the angles at its vertices, remains unchanged, since all right
angles continue to be that way. Thus ¢ describes the local, mqt’mbanoous volumetric
dilatation of a fluid element. When the fluid is incompressible, ¢ = 0, as must be
expected. In a compressible fluid the continuity equation (3.1) shows that

. . 1 De :

= 2= — o ~ 3.1

e = div w o Di , (3.17)
that is that the volumetrie dilatation, the relative change in volumé, is equal to
the negative of the relative rate of change in the local density. /

The relative velocity field presents a different appearance whcn one of the
ofl-diagonal terms of matrix (3.13a), for exampie 6u/6/, has a non-vanishing, say
positive, value. The corresponding field, sketehed in Fig. 3.4, is one of pure shear
strain. A rectangular element of fluid contred on A now distorts into a parallelogram
as indicated in the diagram. The original rlght angle at A changes at a rate measured
by the angle y,, = [(Jufdy) dy dt]/dy, that is at a rate Oufdy. When both dufoy

o . . . .
c. The rate at which a fluid element, js strained in flow

du
7 dydt

]
2

-

i’}
ay
(8 ayor
7"
-7 B
N /
Yoy N\ C //d
BECy
Mr dr
y
dy
du
T/dydl
8
fi--—" \ 8
N ox drdt
LA [ x
T 2

ar

Yorat Fig. 3.5

.

I'ig. 3.4.  Local distortion of fluid element
when 8u/dy > 0 with all other terms being
cqual to zcro; uniform shear deformation,

Local distortion of flnid eclement,
when

Exy = Eyz = } {(0ufdy) + (2vjar)} > O
with all other terms being equal to zero;
distortion in shape. (The diagram has been
drawn for du/Py = dvfor)

Fig. 3.6. Local distortion of fluid element
when

& = 4 {(ovfo) — (oujoy)) + 0 ;
instantancous rigid-body rotation
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and dv/éx have positive nonvanishing values, the right angle at A will distort owing
to the superposition of two motions, the state of affairs being illustrated in Fig. 3.5.
1t is clear that the right angle at A now distorts at twice the rate

. - 1 (6u I v
b = o T g \Gy T

described by two of the off-diagonal terms of matrix (3.15a). In general, the three
off-diagonal terms £, =&,,, £,, =&,,, and £,, = £, describe the rate of distortion
of a right angle located in a plane normal to the axis the index of which does not
appear as a subscript. The distortion is volume-preserving and affects only the

shape of the element.

Cirecumstances are again different in the particular case when oufdy = — ovfox
illustrated in Fig. 3.6. From the preceding considerations and from the fact that
now &, == 0 we can infer at once that the right angle at A remains undistorted.
This is also clear from the diagram which shows that the fluid element rotates with
respect, to the reference point A. Instantaneously, this rotation occurs without
distortion and can be deseribed as a rigid-body rotation. The instantaneous angular
velocity of this rotation is

(ovfox) dz de o ou

dz de % = ay

It is now easy to sec that the component £ of } curl w from eqn. (3.15b), known as
the vorticity of the velocity ficld, represents the angular velocity of this instantaneous
rigid-body rotation, and that

1 {ov ou
2 (61: ay) +0.

In the more complex case when (0vfdx) =+ — (9u/dy), the element of fluid
rotates and its shape is distorted simultaneously. We can still interpret the term

. 1 {ou v

Eoy T Eue =5\ ol

as deseribing the rate of distortion in shape, the term
¢ = 1 (v ou
T2 \ox oy

describing the rate at which the element of fluid participates in a rigid-body
rotation. '

The linearity of eqns. (3.13) or of the (‘nt-iroly( cquivalent equs. (3.14) significs
that the most general case arises by a superposition of the simple cases just described.
Therefore, if attention is fixed on two neighbouring points A and B in a body of
fluid which sustains a continuous velocity field w(=,y,z), the motion of an element
of fluid surrounding these two points can be uniquely decomposed into four compo-
nent. motions:
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(a) A pure translation described by the velocity components u, v, w of w.
(b) A rigid-body rotation described by the components £, 7, & of L curl 1.
(¢) A volumetric dilatation described by e = div w, the lincar dilatations in

the direction of the axes being described by £,, 6, and ,, respectively.

(d) A distortion in shape described by the components £y obe with mixed
indices.

Only the last two motions produce an intrinsic deformation of a (luid clement
surrounding the reference point A, the first two causing a mere, general, displacement
of its location.

The elements of matrix (3.15a) constitute the components of a symmetric
tensor known as the rate-of-strain tensor; its mathematical properties arc z.malog()us
to those of the equally symmetric stress tensor. It js known from the theory of
elasticity [3, 7] or from general considerations of tensor algebra [11] that with
every symmetric tensor it is possible to associate three mutually orthogonal principal
azes which determine three mutnally orthogonal principal planes that is a privileged
Cartesian system of coordinates. In this system of coordinates, the stress vector
or the instantancous motion in any one of the principal planes is normal to it, that
is, parallel to one of the axes. When such a special system of coordinates is used,
the matrices (3.10) or (3.15a) retain their diagonal terms only. Denoting the values
of the respective components by symbols with bars, we would be dealing with the
matrices

7, 0 0 g0 0
o F, 0 and {01 F, 0 (3.18)
0 0 7, 0 0 g

1t should, finally, be remembered that such a transformation of coordinates does
not affect the sum of the diagonal terms, so that

| 0,40, lo,=0,+7,10,, (3.192)
and

£, b €y b E == E, 16, L E, (= e =divw), (3.19h)

because they constitute invariants of the tensors, as already intimated earlier.
Viewed in such two systems of coordinates (both denoted by bars), an element

z 7 _
fo' G £ S
T % L AlAT s
- ! v _ - { i -
[N T -1 6 £y H . £y
-— | P Wy [PPUN DU | f——
| 4 i -
///; T //" -
e P
6 A7 e
b S y, . & .
Fig. 3.7. Principial axes for » ;_ - R
stress and rate of strain z &
4 ¥ 4 A
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of fluid js stressed in three mutually perpendicular directions, and its faces arc
displaced instantaneously also in three mutually perpendicular directions, as suggested
by Figs. 3.7a and b. This does not, of course, mean that there exist no shearing
stresses in other planes or that the shape of the clement remains undistorted.

d. Relation between stress and rate of deformation

It should, perhaps, be stressed once more that the equations which relate the
surface forces to the flow ficld must be obtained by a perceptive interpretation of
experimental results and that our interest is restricted to isotropic and Newtonian
fluids. The considerations of the preceding section provided us with a useful mathe-
matical framework which allows us now to statc the requirements suggested by
experiments in a somewhat more precise form.

When the fluid is at rest, it devclops a uniform field of hydrostatic stress
(negative pressure - p) which is identical with the thermodynamic pressure.
When the fluid is in motion, the equation of state still determines a pressure at.
every point (“principle of local state” [4]), and it is convenient to consider the
deviatoric normal stresses

o) =0, L p; o/ =g, Fp; o =0 lp; (3.20)
together with the unchanged shearing stresses. The six quantities so obtained
constitute a symmetric stress tensor the existence of which is due to the motion
because at rost all its components vanish identically. From what has been said
before it follows that the components of this deviatoric tensor are created solely
by the components of the ratc-ol-strain tensor, that is to the exclusion of the com-
ponents u, v, w of velocity as well as of the components &, n, & of vorticity. This
is cquivalent to sayving that the instantancous translation [component motion (a)]
as well as the instantancous rigid-body rotation [component motion (b)] of an
clement of fluid produce no surface forces on it in addition to the existing com-
ponents of hydrostatic pressure. The preeeding statement, cvidently, merely repre-
senls a precise local formulation of what we expect to observe when a finitc body
of fluid performs a general motion which is indistinguishable from that of an
equivalent rigid body. We thus conclude that the expressions for the components
G, 0, T of the deviatoric stress tensor can contain in them only the velocity
gradients dufdx, . . ., dw[dz in appropriate combinations which we now proceed to
determine. These relations are postulated to be linear; they must remain unchanged
by a rotation of the system of coordinates or by an interchange of axcs to ensure
isolropy. Isotropy also requires that at every point in the continuum, the principal
axcs ol the stress tensor must coincide with the principal axes of the rate-of-strain
tensor, for, otherwise, a prefecred direction woudld be introduced. The simplest
way to achicve our aim is to select an arbitrary point in the continuum and to
imagine that the local system of coordinates &, #, z has been provisionally so chosen
as to coincide with the three common principal axes of the two tensors. The com-
ponénts of the velocity fickd in this system of coordinates are denoted by 7, 4, w.

It is now elear that isotropy ean be secured only il each one of the three normal
sLresses @/, @, a8 made Lo depend on the component of rate of strain the direction
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of which conicides with it and on the sum of the three, each with

of proportionality. Thus we record, directly @ different factor

in terms of the space-derivatives, that

-—z'__.l(iﬁ_»_ﬂ___a'_;{)_ ou
G w Pyt F2e g
..o . e . o 29
7 —‘("a—fJfﬁJfa-z) +2p g 3:21)
j';-_z(i"i, A ﬁﬂ); o .
i w tag te) t2ug

"y -
J]us‘t 2;:'1;:‘1::; 11,1, v, w :lm(l .5, 1, (;' do not appear in these expressions for the reasons
u “nm[r) diht{;“(,)r:] e;f;t ?:pi::)s:lon, the I:?st term r?prcscnts the appropriate rate
h atation, that is, in essence, a change in s ape, and the first term repre-
sents the volumetric dilatation, that is the rate of cha i i b
a change in densit:,y. The factors 2 in the last terms are ?\ii ;rsls;?tlil:lnel;eli:: 0:2‘03';(‘1“,
convenient to facilitate the interpretation, as we shall see later. +llc fag(-t.orscobl’"
pmpo;tnonahty, u nr.nd A, two in all, must be the same in cach of the three r;:codin
cq'uatl(l)ns t';o secure isotropy. It is easy to sce that an interchange bct,wc:cnpavny, tw§
.im.\es, that is an mter.chnn'ge of.zmy of the three pairs of quantities: (i, ), (3,%), (10,2)
eaves the set of.mlatrlons Invariant, as they nust be in an jsotropic mediun; l\',lor’eov;zr
the preceding is the only combination of spatial gradients which po:qso«o,q the
required properties. 1f the reader cannot see this directly, he may oomulti“m/\mo'
rigorous proof in a treatise on tensor algebra (or c. g. [11’] p. 89)- S "

lhc'relataons n eqns. (3.21) can be re-written to apply in an arbitrary system
(ff coordinates by. performing a general rotation with the aid of the a )r.o) riaALe
linear transformation formulac. We shall refrain from putting down tvh[()-l (](‘?‘l“(‘(l
fstvcps because, ?-hough tedious if performed dircctly, they are quite sLmigh} ft)£;\;=;\l'(l
They become simple if tensor caleulus is used. The nppr.oria.be direct forml‘xl:w l'nm;

be . . .
e found m.refs.. [3. 6, 7], whereas their tensorial counterparts are given in ref. |11}
Such a derivation would show that h - .

0'1' —_ A div w }» 2 n gﬁ
iz
, . %
0, =Adivw 4- 2 é{j’ (3.22a)
5. = Adi ow
r =Adivw -2 4 5
z
v ou
o =t = e+ )

ow E) )

Tye = Ty =} (3,[ k oz (3.22b)
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where div w has been used for brevity. The reader may notice the regularity with
which the indices z, y, 2, the components w, v, w, and the coordinates =, y, z are
permutedt.

Applying these equations to the simple casc represented in Fig. 1.1, we recover
eqn. (1.2) and so confirm that the preceding more gencral relation reduces to
Newton’s law of friction in the case of simple shear and does, therefore, constitute
its proper generalization. At the same time, we identify the factor 4 with the viscosity
of the fluid, amply discussed in Sec 1b, and, incidentally, justify the factor 2 previously
inserted into eqns. (3.21). The physical significance of the second factor, A, requires
further discussion, but we note that it plays no part in an incompressible fluid when
div wr = 0; it then disappears from the equations altogether, and so is seen to be
important for compressible fluids only.

e. Stokes’s hypothesis

Although the problem that we arc about to discuss has arisen more than a
century and a half ago, the physical interpretation of the sccond factor, 2, in
eqns. (3.21) or (3.22a,b) and for flows in which div w does not vanish identically,
is still being disputed, cven though the value which should be given to it in the
working equations is not. This numerical valuc is determined with the aid of a hypo-
thesis advanced by G. G. Stokes in 1845 [13]. Without, for the moment, concerning
ourscives with the physical reasons which justify Stokes’s hypothesis, we first state
that according to it, it is necessary to assume

31 2u=0, o A=— p. (3.23)

This relates the value of the factor A to the viscosity, u, of the compressible fluid
and reduces the number of properties which characterize the field of stresses in
a flowing compressible fluid from two to one, that is to the same number as is
required for an incompressible finid.

Substituting this value into eqns. (3.22a), we obtain the normal components
of deviatoric stress:

) 2 .
0, =~ 3 p divw 2 p P

2 w .
g, = — 3 M divw -2 p 5; (3.24)
o, = — ; pdive -+ 2 p %:) ,

t

4 .
t The aboye set of six equations can be contracted to a single one in Cartesian-tensor notation
(with Finstein’s summation convention):

, v
Oy = ).(SU 51_;‘ -+ /l(

where the Kronecker delta 61] = 0 for i # j and 6‘1 = lfori=j.

vy vy ) .
W M) Gk —1,2,3
oxy oxg (g )
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the shearing stresses remaining unchanged. Making use of eqns. (3.20), we obtain
the so-called constitutive equation for an isotropie, Newtonian fluid

2 H o
e =P — 5 1 divi |- 2 p "
2 : on o
Oy =="DP— 3 H div w -+ 2 B o (3.250)
2 H ow ]
0, =P~ 3 pdive 4 2 p o
ov ou
Ty =T =\ gy

aui v )

Toy = 1t ( P (3.25b)

ou L ow\
Tox == Typ = I 2z 7

in its final form, noting that p represents the local thermodynamic pressuret.

Regarded as a pure hypothesis, or even guess, eqn. (3.23) can certainly be
accepted on the ground that the working equations which result from the substitution
of eqns. (3.25a,b) into (3.11) have been subjected to an unusually large number
of experimental verifications, even under quite extreme conditions, as the reador
will concede after having studied this book. Thus, even if it should not represent
the state of affairs exactly, it certainly constitutes an excellent approximation.

Since the deviatoric components are the only ones which arise in motion,
they represent those components of stress which produce dissipation in an isothermal
flow, there being further dissipation in a temperature field due to thermal conduction,
Chap. XII. Furthermore, since the factor A occurs only in the normal components
0., 0,/ 0, which also contain the thermodynamic pressure, eqns. (3.20), it becomes
clear that the physical significance of A is connected with the mechanism of dissi-
pation when the volume of the fluid element is changed at a finite rate as well as
with the relation between the total stress tensor and thermodynamic pressure.

f. Bulk viscosity and thermodynamic pressure

We now revert to the general discussion, without necessarily accepting the
validity of Stokes’s hypothesis, but confine it to the case when no shearing stresses
are involved, because their physical significance and origin is clear. Consequently,

) &

t In the compact tensorial notation we would write

o | vy 2 au,,) ..
Oy =—pOy+plst + 57 _2¢, 5% c=1,2,9).
7 POy (31’ } a3 oy dry (G k=121
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we consider a fluid system, say the sphere shown in Fig. 3.8a w!licll_i‘s sub]:ected
to a uniform normal stress, 7, on its boundary. Tn t.'he absence of m'o‘t,m!\ 7 is obviously
equal and opposite in sign to the thermodynamic pressure, p. Taking the sum of
the three equations (3.21) and utilizing eqns. (3.20), we find that

G —p | (A i ) div o, (3.26)

and notice that our equations refleet this faet, as already pointed out carlier. Now,
the question poses itsell as to what this relation should be in a general flow ficld.

5

istati i il i i ass of fluid
Fig. 3.8. Quasistatic compression and oscillatory motion of a spherical mass of flu

When the system is compressed quasistatically and reversibly, we again recover
the previous casc because then div w —> 0 asymptotically. .Wc note Ll}at in such
cases the rate at which work is performed in a thermodynamically reversible process

per unit volume becomes

W = pdivw (3.26a)

which is the same as
—p W 3.26b
W @ 260)

in the notation customary in thermodynamics.

When div w is finite, and the fluid is compressed, expanded or made to oscillate,

at a finite rate, cquality between & and — p persists only if the coefficient

Wo=21 | 3 " (3.27)

vanishes identically (Stokes’s hypothesis); othergvisc it does not. If //' r}f 0, .Lhe
oscillatory motion of a spherical system, Fig. 3.8b, would produce dlSSlpatl?n,
even if the temperature remained constant throughout the bulk of t.;he gas. 'I’he
same would be true in the case of expansion or compression at a ﬁm.te rate. For
this'mason, the coefficient g’ is calied the bulk vis.msi{y of the ﬂu.ldf 1t represents
that. property, like the shear viscosity u for deformation in shs‘,pc, which is rfasponlmhlc
for energy dissipation in a fluid of uniform temperature during a change in volume

f. Bulk viscosity and thermodynamic pressure 63

at a finite rate. The bulk viscosity would thos constitule a second property of a
compressible, isotropic, Newtonian fluid needed to determine its constitutive equation
and would have to be measured in addition Lo Je- Heis evident that

#o=0 implies p o g

3y

f0 mplies p o)

Thus the aceeptance of Stokes’s hypothesis is equivalent to the assumption that.
the thermodynamic pressure P is equal the one-third of the invariant sum of normal
stresses even in cases whon compression or expansion proceeds al a finite rate,
Furthermore, it is.also equivalent to the assumption that the oscillatory motion of
a large spherical system would be reversible i it were isothermal. More detailed
considerations in terms of the concepts of thermadynamics as it applies to irrever-
sible processes in continuous systems can be found in the works of J. Meixner | 8],
I. Prigogine [12] and S. R. de Groot and P, Mazur [1].

In order to determine under what conditions the bulk viscosity ofa compressible
fluid vanishes, it is necessary to have recourse to experiment or to the methods of
statistical thermodynamics which permit. us to calculate transport. cocfficients from
first principles. "The direet measuarement of bulk viscosity is very difficult to per-
form, and no definitive results are in existence. Statistical methods for dense gases
or liquids have not yet been developed to a point which would allow us to make a
complete statement on the subject. It appears, however, that the bulk viscosity
vanishes identically in gases of low density, that is under conditions when only
binary collisions of molceules need to be taken into account. In dense gases, the
numerical value of bulk viscosity appears to be very small. This means that eqns.
(3.26a,b) continue to deseribe the work jn a continuous system in the absence of shear
to an excellent degree of approximation and that dissipation at constant. tempera-
ture, even in the general case, occurs only through the intervention of the devia-
toric stresses. Thus, once again, we arc led to Stokes’s hypothesis and so to eqn.
{3.26). This conclusion does not extend to fluids which are capable of undergoing
relaxation processes by virtue of a local departure from a state of chemical equili-
brium [1,8]. Such relaxation processes oceur, for example, when a chemical reaction
can take place, or, in gases of complex structure, when a com paratively slow transfer
of energy between the translational and rotational degrees of freedom on the one
hand, and the vibrational degrees of freedom on the other, becomes possible. Thus
when relaxation processes are possible, the thermodynamic pressure is no longer
cqual to one-third of the trace of the stress tensor.

1t is sometimes argued that the adoption of Stokes's hypothesis, that i the
supposition that the bulk viscosity of Newtonian fluid vanishes, does not accord
with our intuitive feeling that a sphere of fluid whose houndary oscillates so that,
there is a cyclie sequence of compression and expansion, Fig. 3.8, would dissipate
no energy. This would, indeed, be the case, as is easily scen from the preceding
argument, because the dissipative part of the stress field vanishes under such con.
ditions. 1t must, however, not be forgotten that such a conclusion is valid only if
the temperature of the sphere of gas were to be kept constant during the oscillation
throughout the whole volume. Normally this is impossible. Consequently, an
oscillating sphere of gas will soon develop a temperature field and cuergy will be
dissipated down the existing temperature gradients [6].
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g. The Navier-Stokes equations

With the aid of eqns. (3.20) the non-viscous pressure terms can be separated
in the equation of motion (3.11) so that they become

, ar
Du ap anz arzy zz)
Ql)lzx——az_l_<6x'+ ay + 0z
da,’ ot
Do op (e, 0% y%) 3.28)
QI)t:Y_ay_l'<az + ooy T o (
: ar da,’
Dw ap a:rxz Ty Tz )
Qﬁizz—éi+<az+ay_} oz

Introducing the constitutive relation from cqns. (3.24) we obtfmin .thc resulbm.lt
surface force in terms of the velocity components, c. g. for the z-direction we obtain

with the aid of eqn. (3.10a):

‘ ot
0, arw or,, ap aq, v arw £
Py = oz + oy +’é'z oz ox + oy oz
P ow ou
ap , @ w2 . 2 du | dv _a[ ( )]
":‘“52*'}95& 2/‘%_?"“1“'"'] +57J[”<3y+ax 4 2 | P\ex T &

and corresponding expressions for the y- and z-components. In the gellerall case of
a compressible flow, the viscosity x must be rcgardod as dependent on ml sgalt,(,
coordinates, because g varies considerably with temperature (Tables 1.2 and 12.1),
and the changes in velocity and pressure together with the heat due to frlctlonf
bring about considerable temperature vnriat'ions. The temperature dependence o
viscosily p(T) must be obtained from experiments (cf. Sec. XIITa).

If these expressions are introducerd into the fundamental equations (3.11), we

obtain
v [ ou
b . op 2] du 2 .. 3_ ?u 17:)] o _6‘ (?w _}_»)
i =X 5t ”(25; g div "’)v ay (Mo Tz )] Ta [Her T E)]
] on o
Dv ap o w2 .. 2 (@_ _ayz>] L@ ( w)
e =Y =35, Fg |#\2ay —gdive )| taim\g tay )] Ta|#ey T
Duw op | @ w2 2 @zg+ag>]+_a ﬂ(gz_*_?_l_v)_
e =7 ot [#\ 25 AV )|ttt e | Yy \Em Ty

(3.29a, b, )t

These very well known differential cquations form the basis of the whole scifznce
of fluid mechanios. They are usually referred t¢ as the Navier-Stokes equations.

1 In indicial notation:

av() op ] {‘(6_@ Lo avk)} (i k=123).
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It is necessary to include here the equation of continuity which, as seen from eqn. (3.1),
assumes the following form for comprossible flow:

% + 2o u) -+ alov) - Aew) _ 0 (3.30)
o oz dy dz ' e
The above equations do not give a complete description of the motion of a com-
pressible fluid because changes in pressure and density effect temperature variations,
and principles of thermodynamics must, therefore, once more enter into the con-
siderations. From thermodynamics we obtain, in the first place, the characteristic
equation (equation of state) which combines pressure, density, and temperature,
and which for a perfect gas has the form

p—eRT =0, (3.31)

with R denoting the gas constant and 7' denoting the absolute temperature. Secondly,
il the process is not isothermal, it is further neeessary to make use of the cnergy
cquation which draws up a balance between heat and mechanical energy (First Law
of Thermodynamics), and which furnishes a differential equation for the temperature
distribution. The energy equation will be discussed in greater detail in Chap. X11.
The final equation of the system is given by the empirical viscosity law w(T), its
dependence on pressure being, normally, neglected. In all, if the forces X, ¥, Z are
considered given, there are seven equations for the seven variables %, v, w0, p,p0 T, pu

For isothermal processes these reduce to five equations (3.29a,b,c), (3.30) and
(3.31) for the five unknowns u, v, w, P, 0.

Incompressible flow: The above system of equations becomes further simplified
in the case of incompressible fluids (e = const) even if the temperature is not
constant. First, as already shown in eqn. (3.1a), we have div w == 0. Secondly,
since temperature variations are, generally speaking, small in this case, the viscosity
may be taken to be constantt.

The equation of state as well as the energy equation become superfluous as far
as the calculation of the field of flow is concerned. The field of flow can now be considered
independently from the equations of thermodynamics. The cquations of motion
{3.29a,b,¢) and (3.30) can be simplified and, if the acceleration terms are written
out fully, they assume the following formn:

on ou u ou op %, 0% | Q%
4 (’éi’ trug gt éé)“ XK= tn (5,; oy T

Fo o al") (3.32a,b,¢)

ov o dv AN op i
0 (‘ﬁ Tugy vyt :a;) Y=g tn (555 Toy T
2w ow ow ow p w | Pw 9w
(5&“F“9;+”5;+’”5;'>“—Z—a';+”(a?+5;z' Bz)
ou ov ow
o 4 3y + a5 = 0. (3.33)

f This condition is maro nearly satisficd in gases than in liquida.
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With known body forces there are four equations for the four unknowns u, v, w, p.
If vector notation is vsed the simplificd Navier-Stokes equations for incompres-
sible flow, cqns. (3.32a,b.¢), can be shortened to

0 11))1:: =F-——gradp | puy?w, (3.34)

where the symbol 72 denotes tho Laplace operator, V2 = 9%[0x? |- 0%[oy? - 0%[022
The above Navier-Stokes equations differ from Euler’s equations of motion by
the viscous terms 72w

The solutions of the above equations become fully determined physically when
the boundary and initial conditions are specified. In the case of viscous fluids the
condition of no slip on solid boundaries must be satisfied, i. e., on a wall both the
normal and tangential components of the velocity must vanish:

v, =0, v, =0 on solid walls . (3.35)

The equations under discussion were first derived by M. Navier [9] in 1827 and
by S. D. Poisson [10] in 1831, on the basis of an argument which involved the
consideration of intermolecular forces. Later the same equations were derived
without the use of any such hypotheses by B. de Saint Venant [14] in 1843 and
by G. G. Stokes [13] in 1845. Their derivations were based on the same assumption
as made here, namely that the normal and shearing stresses are linear functions
of the rate of deformation, in conformity with the older law of friction, due to
Newton, and that the thermodynamic pressure is equal to one-third of the sum of
the normal stresses taken with an opposite sign.

Since the hypothesis of linearity is evidently completely arbitrary, it is not
a priori certain that the Navier-Stokes equations give a true description of the
motion of a fluid. It is, therefore, necessary to verify them, and that can only be
achicved by experiment. In this connexion it should, in any case, be noted that
the enormous mathematical difficulties encountered when solving the Navier-Stokes
equations have so far prevented us from obtaining a single analytic solution in which the
convective terms interact in a general way with the friction terms. However, known
solutions, such as laminar flow through a circular pipe, as well as boundary-layer
flows, to be discussed later, agree so well with experiment that the general validity
of the Navicr-Stokes cquations can hardly be doubted.

Cylindrical coordinates: We shall now transform the Navier-Stokes equations
to cylindrical coordinates for future reference. If r, ¢, z denote the radial, azimuthal,
and axial coordinates, respectively, of a three-dimensional system of coordinates,
and v, vy, v, denote the velocity components in the respective directions, then
the transformation of variables [3, 11] for the case of incompressible fluid flow,
eqns. (3.33) and (3.34), leads to the following system of equations:

v v v, v v,? v
r r ¢ r ) r
e (m SIS "3;) =
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v
—F =2 (G L, SR TR}
%”7'+7'+$% %zo, (3.36d)
The stress components assume the form
R O
0z=—2’+2ﬂ?’. rrz~/t(~%z}zf~+i?)

Curvilinear coordinates: Tt is often useful to employ a curvilinear ayst
coordinates which is adapted to the shape of the body. Ir!: t‘i:c easc of two-dir?xerﬁ;?)ngf
ﬂow' along & curved wall, it is possible to select a coordinate system whosc
ab§c18§.a, %, is measured along the wall, the ordinate, y, being measured at right angles
toit, Kig. 3.9. Thus the curvilinear net consists of curves which are parallel to the wall

et © \

U
,\ \
Fig. 3.9. Two-dimensional boundary layer along a curved wall \

an of straight lines perpendi\.zular to them. The corresponding velocity components are
benotcd b.y “ and. v, respectively. The radius of curvature at position x is denoted
y R(x); it is positive for walls which are convex outwards, and negative when the

wall is concave. The appropriate form of the complete Navi i
been derived by W. Tollmien [15]. They are: pplete Ravior-Stokes equations has
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The stress components are

R ou v
Oz = —p+ 2'“(1c v VT y)
P v
Oy =—1p-+ 2 "y (3.39)
— (au __u b R o
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and the vorticity [see eqn. (4.5)] becomes
1 R o Ju 1
@ *Y(R Yyox By Ry ) (3.40)
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