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ROCESS FLUID MECHANICS provides a fully comprehensive,
etailed, and orderly treatment of the essentials of fluid mechanics
th from the macroscopic and microscopic viewpoints. Author
'Morton M. Denn has organized his excellent treatment into an in-
troductory segment; four sections devoted to the subjects of dimen-
ional analysis and experimentation, macroscopic balances, detailed
ow structure, approximate methods, and a final section dealing
with advanced topics.
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(Opening chapters discuss the nature of macro- and microscopic flow
problems, physical units employed, and physical properties. This
foundation is followed by the section on dimensional analysis and ex-
perimentation, which includes chapters on pipe flow and the flow of
‘particulates, including flow through porous media. Part three pre-
sents clear discussions of macroscopic balances and their practical
applications.
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Detailed flow structure is treated in the chapters on microscopic
balances, one-dimensional flows, accelerating flow, and converging -
flow. The fifth section of PROCESS FLUID MECHANICS ad-
dresses approximate methods, with coverage of ordering and ap-
proximation; creeping flow; the lubrication approximation; stream
function, vorticity and potential flow; and the boundary layer ap-
proximation. The final section treats turbulence, perturbation and
numerical solution, two-phase gas-liquid flow, and viscoelasticity.
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Chap. 12 Creeping Flow

tof r and 0, and obtain an expression for v, in terms of v,.

pis independent of r and equals —# dv,/dz. (Hint: Consider
r radius of the liquid column.)

‘=TIz, where I" may be a function of .

it imposed force, show that L/Ly = (1 ~— Ft/3A4m)"1, where

are the initial length and area of the liquid column.

i a first step in describing the process of continuous filament

V|1 ) orom
1 b

L(1)

s formed and grows in a large container of an isothermal
'd, The pressure in the bubble (relative to the quiescent
it bubble) can be related thermodynamically to the superheat
bubble to grow. Obtain the relation between the bubble radius
1), and the bubble pressure. Inertia of the fluid being pushed

viscosity gradient. As a first approximation to this problem,
is for the squeeze film, Sec. 12.4, for the case in which the
51 known function of position between the plates: 77 == p(z). (v,
od explicitly in terms of an integral of a function of #7(z) for the
¥ i symmetric about the center plane. The problem is slightly
rin is taken at the center plane, with each disk moving towards
helocity V/2.)

The Lubrication ._ u
, Approximation

13.1 INTRODUCTION

The lubrication approximation is a simplification that applies to flow between
“nearly parallel” surfaces. This approximation was first used by Reynolds in
1886 in a study of lubrication, hence the name. The common name of the
procedure is unfortunate, however, for it implies an unduly restrictive range
of applications; the lubrication approximation is fundamental to the study of
polymer processing, where it forms the basis for the analysis of extrusion,
coating, calendering, and molding operations. It is, therefore, one of the
most important methods of approximate solution of the Navier-Stokes equa-
tions.

We shall first introduce the lubrication approximation in an intuitive
manner, and this introduction may suffice for some readers. We shall then
develop the formalism through a more careful ordering analysis and consider
further applications.

13.2 INTUITIVE DEVELOPMENT

Consider the pressure-driven flow of an incompressible Newtonian fluid
between converging planes with a very small half-angle «, shown in Fig. 13-1.
If the walls were perfectly parallel (¢ = 0) this would simply be the problem
of plane Poiseuille flow studied in Sec. 8.2, with a parabolic velocity profile
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Sec. 13.3 Ordering Analysis 267

re wall at y = H(x) It should be noted that nothing in the derivation of Eq. (13.5) in fact
— requires that H(x) be linear. The conduit could have a nonlinear shape, as
A ) — F shown in Fig. 13-2, as long as the slope dH/dx is always small. In that case we
p—— - X can still compute A® and P as long as the function H(x) is known. We require

separately, of course, that the length of the conduit be long compared to the

average spacing between the walls, so that we may assume fully developed

Figure 13-1. Schematic of pressure-driven flow in a plane channel with flow at all ﬁOwwSowm

slowly converging walls.

e (- ()]

(We have retained d®/dx in place of A®/L for reasons that will become obvious
shortly.) Similarly, using Eq. (8. 14) we may write the flow rate per unit width,
g, as

given by Eq. (8.12):

- HY( d® s
g= Qﬁlmmv (132)

If the angle & is small, we may reasonably expect the flow to be nearly the
same as flow between parallel walls, so we expect Egs. (13.1) and (13.2) to
apply, except that H is now a function of x. The flow rate is a constant at all
values of x, so it follows from Eq. (13.2) that d®/dx must vary as H ~*(x) and
cannot be a constant.

The power consumption depends on evaluation of o,,; compare Sec. :
10.1. The viscous stress term 27 0v,/dx is zero for flow between parallel walls,
so the power consumption is simply equal to the product of flow rate and
pressure drop. For flow between nearly wmmm:& walls we may obtain dv,/dx
by differentiation of Eq. (13.1); the result is proportional to dH]dx, which is
equal to o for small &, and hence may be neglected. To within the small-

Figure 13-2. Schematic of a channel with slowly converging curved walls.

13.3 ORDERING ANALYSIS

We will develop the lubrication approximation for two-dimensional plane

flows, but, with obvious changes appropriate to a different coordinate sys-

tem, the results will clearly apply to axisymmetric three-dimensional flows as

well. The geometry shown schematically in Fig. 13-3 is the basis for the
L

) . . FH —
angle approximation, therefore, the power consumption is again determined y ] 1_
solely by the pressure drop. The pressure drop is obtained by rewriting Eq. yine
(13.2) as an equation for @, QV.
X
v 124 133 - U
dx —  H(x) (13.3).
This is integrated to Figure 13-3. Schematic of a slider block. The bottom surface moves rela-
- tive to the upper surface with velocity U. The spacing and change in spac-
AP = —12nq ._, H3(x) dx (13.4) . ing are both small relative to L.
with a power consumption ordering analysis. The lower surface moves at velocity U relative to the upper
P = g|A0| = 121¢° %r H(x) dx (13.5) surface. The geometrical parameters satisfy the following inequalities:
3 H
. 2
When the equation for the linear function H(x) is substituted into Eq. (13.5), L <1 (13.62)
we simply obtain Eq. (10.66). This is plotted in Fig. 10-8, where we see that H, — H,

the assumption of nearly parallel flow is good up to a half-angle of about 15° T <1 (13.6b)
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Equation (13.6a) is the assumption of a long flow channel, and Eq. (13.6b) is
the “nearly parallel” assumption. We will be dealing at all times with flows
for which the inertial terms are negligible,* as we shall show in Sec. 13.7. Our
starting point is therefore the creeping flow equations for an incompressible
Newtonian fluid, which for a two-dimensional planar flow have the form

4 G 0 (13.7)
e d*v, , %,

0= -5+ qA%N T %Nv (13.82)
e 9%

0= 5 + i%p + 5 v (13.8b)

To carry out an ordering analysis we will need to express the flow equa-
tions in dimensionless form. The significant feature of this problem is that it
containg two nrmmmoﬁ:m:o lengths. The characteristic length in the y direc-
tion is clearly a spacing between the surfaces; to be specific we may take H,,
since H, and H, do not differ significantly. There are also changes in Eo X
direction, however, and these take place over a distance of order L; thus, L
is the characteristic length in the x direction. The dimensionless coordinates

é\ﬁm therefore L
o x zuy / (139)

pRT———

p—

The characteristic velocity in the flow direction is o_amzv\ the linear veloc-
ity of the lower surface, U. There will also be some flow in the y direction,
however, since the walls are not parallel. This y-direction flow will be Qwﬁ:mo-
terized by a velocity that is different from U, and we shall denote it mé Vis
an unknown at this stage of the devélopment and must still be determined.
Recognizing this fact, we write the dimensionless velocity components as

5 = Zx 5 o=
b= v, e (13.10)

Finally, the dimensionless equivalent pressure is written

§-2 (13.11)

The characteristic pressure, IT, must also be determined.
It is convenient to consider the dimensionless equations one at a time.
The dimensionless continuity equation, Eq. (13.7), is

Uds, , V95, _
Lo - G=0 (13.122)

*Recail that the inertial terms vanish identically in perfectly parallel flows of the type
studied in Chapter 8.
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or

A 24 vm%l + ww (13.12b)

The dimensionless group UH,/VL must be of order unity. This follows by
considering the consequences of any other choice. If UH,[VL is large com-
pared to unity, then the 9%,/0% term in the dimensionless equation (13.12)
will dominate and 9%,/d7 can be neglected; in that case, the equation sim-
plifies to %,/d% = 0, which contradicts the necessity of allowing v, to vary
with x as the spacing changes. Similarly, if UH,/VL is very small compared
to unity, we may neglect the 0%,/9% term relative to 7,/97; in that case, the
equation simplifies to 8%,/07 = 0, and the boundary condition requiring 7,
to vanish at the wall then requires that %, be zero everywhere, which is a con-
tradiction in a changing cross section. The continuity equation therefore
defines V by the requirement that UH,/VL be of order unity:
y o UH,
L

Note that, consistent with one’s intuition, ¥ < U for this nearly one-dimen-
sional flow.

We now turn to Eq. (13.8a), the x component of the momentum equation.
In dimensionless form this is written

o B S o

One simplification is MBBQ&&&% obvious. Since H,/L < 1, the x-derivative
term in the brackets may be neglected relative to the y-derivative term. This
is consistent with our intuitive understanding that rates of change in the y
direction are much larger than rates of change in the x (flow) direction. We
may thus rewrite Eq. (13.14) as
TIHY 96  3%3,
Aac.hv g% ~ 9y
The two terms in Eq. (13.15) must be of comparable magnitude, since neither
term can dominate without introducing a contradiction; indeed, for parallel
walls Eq. (13.15) is simply a statement of the balance between the pressure
drop and shear stress terms. Thus, the dimensionless group 1TH?}/nUL must
be of order unity, and we obtain an expression for the characteristic pressure:

(13.13)

(13.15)

UL
1= QE (13.16)

Finally, we consider the y component of the momentum equation, Eq.
(13.8b). In dimensionless form, using Eg. (13.16) for II, this is written

0= ww% & E%Am% %ym + wwy (13-17)
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As before, we may neglect the x-derivative term in the brackets relative to
the y-derivative term. Thus, we can write Eq. (13.17) after some simplifica-
tion as

L

9% Am_vw I*y g (13.18)

i - 9 =
All the characteristic quantities have been defined, so there are no more
degrees of freedom. We must therefore conclude from Eq. (13.18) that, to
within the approximation that H,/L < 1, 0397 is negligible and ® is a func-
tion only of %. This is a primary result—that we may neglect variations in the
pressure over the width of the channel.
We can summarize the ordering analysis by rewriting Eqs. (13.15) and
(13.18) in dimensional form:

| ® = ®(x) (13.19)
ae 3%,

dx dy*

These are the ap:mz,o:m that describe flow between parallel walls, except that
d®/dx need not be a constant and v, may depend on x as well as on y.

(13.20)

13.4 LUBRICATION EQUATIONS

Equations (13.19) and (13.20) are the basic equations for the lubrication
approximation. Because of their very simple structure they can be solved
directly and expressed in alternative, more useful forms. Because d®/dx is
independent of y, Eq. (13.20) can be integrated twice to give

= L 40
U 2ndx
The “constants” of integration C, and C, are independent of y, but they will

depend on x. If we take the origin of the y coordinate at the moving surface,
we have boundary conditions

v 4Gy + G (13.21)

aty=0: v, =U (13.22a)
aty = H(x): v, =0 (13.22b)
C, and C, can then be evaluated to give
oo Ul — .ﬁ,glh,&m ﬁlilg 13.23
ve= U= gig |~y HOU T HG (13.23)

Equation (13.23) is simply the equation describing the velocity distribu-
tion between two flat plates with an imposed pressure gradient. In this case,
however, we do not know the pressure gradient. This 1s a typical situation in
applications of the lubrication approximation. We may not know the flow
rate between the plates either, but we do know that it must be the same at all
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values of x. Defining ¢ as the flow rate per unit width, we have
H{x)
qg= b v, dy = constant (13.24)
and, carrying out the integration of Eq. (13.23),
g = UH(x) H(x)d®
) q dx
Equation (13.25) is sometimes taken as the starting point for the lubrica-

tion approximation. It can be looked upon as an equation for d®/dx and
rearranged to

(13.25)

ae u gq
ax saﬁmwg %QL (13.26)
or, 53@535@ once,
* dx " odx
Plx) =@ 6nU — 12 P 13.27
(x) o T 67 .“o %) QQ.“D H () ( )

®, is a constant of integration that represents the pressure at x = 0. Finally,
a useful éxpression relating the flow rate, g; the relative velocity, U; and the
overall pressure change, ®, — ®(L); can be obtained by setting x = L in Eq.
(13.27) and rearranging:

G0 4 ¢ b il (13.28)

127 _. H3(x)dx 2 _.oh H-¥(x) dx

0

Q“

For the case in which U = 0, this is simply Eq. (13.4). Note that although
Fig. 13-3 is drawn with two plane surfaces, H(x) can in fact be any function
of x as long as dH/dx is small compared to unity.

13.5 COATING

We analyzed the problem of wire coating in Sec. 8.5. The treatment there was
somewhat oversimplified in that we took the die to be of uniform cross sec-
tion and assumed that the reservoir pressure was atmospheric. The real situa-
tion is more likely to be like that shown in Fig. 13-4, with a possible pressure
drop between the reservoir and the die exit. We will analyze this flow here for
the coating of a sheet rather than a wire, in keeping with the two-dimensional
equations developed in this chapter. The case of a wire die is identical, except
that the equations for axisymmetric flow are used. The sheet case applies to
the wire as well when the maximum spacing between the wire and the die
wall is small compared to the radius of the wire.

The coating thickness H, is related to the flow rate by the equation

g = UH, (13.29)
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Die Wall
7

Liquid

Reservoir Hy

e Wi N

Figure 13-4. Schematic of a wire coating die.

We can therefore write Eq. (13.28) as

L
H*(x) dx
Mo Co—OL) ] J, 700 ds

- (13.30)
sai H(x) dx
0

2T H o dx

If there is no net pressure drop through the die [®, = ®(L)], the coating
thickness depends only on die geometry. In general, however, a pressure
drop across the die will be employed, and for a given sheet or wire speed the
pressure drop determines the thickness. The pressure drop required for a
given coating thickness is obtained by rewriting Eg. (13.30) in the form

L H, 17,
®, — O(L) = ;i\b ﬂ@?@ _ & dx (13.31)

It is evident from Eq. (13.31) that the coating thickness can never be less than
one-half the exit spacing of a converging die, or else a negative pressure drop
would be required.

It 1s of interest to examine the velocity profile in the die. If we replace g
in Eq. (13.26) with UH, and substitute for d®/dx in Eq. (13.23), we can
express the velocity at any position as

o, = QA_ - wvﬁ - .A — wl%vwg (13.32)

[t is understood in Eq. (13.32) that H is a function of x. The term in brackets
will be negative over a portion of the cross section whenever H > 3H,, indi-
cating a negative velocity and a region of backflow near the wall, as shown
schematically in Fig. 13-5. The region of zero net flow (flow forward exactly
compensated by reverse flow) occurs in the region H, < y << H, where H, is
defined by the equation

0= ﬁs dy (13.33)

Hey
When Eq. (13.32) is substituted into Eq. (13.33) and the integration carried
out, H, is found to satisfy the equation

__HxH,
Ho(x) = Eéxl i (13.34)
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Equation (13.34) is plotted in Fig. 13-5 for a plane wall. Fluid in the region
¥y << Hy(x) is swept out and forms the coating, while fluid in the region
Ho(x) < y << H(x) simply recirculates. The recirculation will result in a long
residence time in the die for a portion of the fluid and could lead to degrada-
tion of the coating material in some cases. Recirculation can be avoided by
ensuring that the spacing between the moving surface and the die wall never
exceeds 3H,. ,

Die Wall

3l Recirculating
y Flow

Hol(x)/ Hy

) Moving Sheet

Figure 13-5. Recirculation in a coating die with a plane wall.

13.6 SLIDER BLOCK

The application of the lubrication approximation to a classical problem in
lubrication is illustrated by reference to Fig. 13-3. We suppose that the sta-
tionary block is completely immersed in the fluid. The pressure in the Huid
outside the space between the moving sheet and the block, but near x = 0
and x = L, is then simply hydrostatic. Thus, ®(L) = ®,, and we may take
®, = 0 without any loss of generality. It then follows from substitution of
Eq. (13.28) into (13.27) that

. —_ : A\dv .
®(x) = 6nU CTH dx (13.35)
where

o h H () dx

_ il © (13.36)
b H3(x) dx

For the special case of a plane surface (a wedge),

6qU__[H, — HOIH®) — Hil (1337
H: — H3 H?*(x) (13.37)
The upward stress o, consists of a pressure term and a term 2 dv,/dy.
From the continuity equation, dv,/dy is equal to —dv,/dx, and the latter is

wedge: @(x) =
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proportional to dH/dx and can thus be neglected. The force per unit width
acting upward on the block is therefore

\?uﬁﬁbﬁ (13.38)

For a wedge this force is

. 6nUL? HN\ 2H, — H,)
dge: = _ ! 2
wedge: Fy= iE; IENTDA sv 0o, H* (13.39)
The normal force is nonzero only for H, % H,. The force F, takes on a
maximum for H, ~ 2.2H,; in that case
nUL?
Hj
Clearly, a very large normal force is exerted by the thin film of liquid for
small H,. This is the basis of effective lubrication.

The force required to pull the plate past the block is obtained by integrat-
ing the shear stress at the plate:

Logw
L= — === d 13.41
b 4 dy “kuo ¥ ( )

wedge: Fiy pe == 0.16

(13.40)

(The negative sign is required because ndv,/dy is the stress exerted by the
ftuid on the plate, while we require the equal and opposite value.) For the
special case of a wedge the integration gives

nUL 6(H, — H,)

.1 Fl_ Q
énama.ﬁl T, = E»T 5 T, 7T, (13.42)

At the ratio H,/H, = 2.2, corresponding to the maximum upward force, we

have

wedge: F, .= 0.75 th (13.43)

We can then compute the coefficient of friction, the ratio of imposed shear

force to obtained normal force, as
coefficient of friction = Loma ~35 NMN (13.44)

NﬂZBwﬂ

This can be made a very small value for a sufficiently thin liquid film.

13.7 NEGLECT OF INERTIA

Our starting point in the derivation of the lubrication equations was taken
to be the creeping flow equations. It is helpful to examine the inertial terms
to ensure that they are indeed negligible.
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The x component of the steady-state Navier-Stokes equations is

(oo - anfredz)  we

In dimensionless form, using ¥ and IT as defined by Egs. (13.13) and (13.16),
respectively, we obtain .

-

bmpAmxww.fﬁmevn L W%M.TA VNWMWLSQQ (13.46)

Thus, the inertial terms will be negligible if
2 -
o)
i LS

or, equivalently, ‘

m%m»m
A 2 Vh =Re L <1 (13.47b)

This includes a much wider range of flow conditions than the stronger require-
ment for general creeping flow, Re < 1.

- et (13.47a)

13.8 CONCLUDING REMARKS

The lubrication approximation illustrates the way in which order-of-magni-
tude estimates can be used to simplify flow problems when the flow is “almost”
one-dimensional, providing two characteristic length scales and hence two
characteristic velocities. The same type of ordering will be used again in
Chapter 15 on boundary layer flows. The use of the lubrication approxima-
tion has led to considerable insight into both lubrication flows and polymer
processing operations. Successful application to polymer processing has been
achieved because processing applications such as extrusion, molding, coating,
and calendering involve the flow of a very viscous liquid between surfaces
that are in close proximity and in relative motion with respect to one another.
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PROBLEMS
13.1. Estimate the pressure drop in the slowly-varying cylindrical contraction shown
in Fig. 13P1.
T T
Q A R | H R{z) ﬁ r

13.2. Repeat Problems 12.3 and 12.4 for a case in which the spacing H between the
disks is a slowly varying function of radius, H(r).

{
13.3. An end-fed sheeting die is shown schematically in Fig. 13P3. Fluid flows

axially because of an axial pressure gradient. There is also a side flow through
the die because of the pressure difference between the tube and the die exit.
Estimate the flow distribution along the length of the die. You may assume
that the axial tube flow is locally fully-developed Poiseuille flow, and that the
die flow rate at each position is fully-developed plane Poiseuille flow. (A nearly
identical analysis applies to slow leakage through a porous-walled tube, as
in flow in the kidney.)

] L4

Stream Function, 1 4
Vorticity, and Potential
Flow

14.1 INTRODUCTION

Three auxiliary functions, the stream function, the vorticity, and the potential
function, are often used to represent and interpret solutions of fluid mecha-
nics problems. The stream function is applicable to certain incompressible
flows. Vorticity is a measure of local rotation and is broadly used. The
potential function is important in the inviscid limit. We shall briefly introduce
these concepts in this chapter.

14.2 STREAM FUNCTION

Consider a two-dimensional plane flow of an incompressible fluid with v, =
0. The continuity equation is

v, | 9vy _ 14.1
dx = dy 0 (4.1
The stream function w(x, y) is defined as the function such that
- _ 4 14.2
Vy = Mwﬂ v, = lﬂ%.x h . v

Clearly, the continuity equation is automatically satisfied when Egs. (14.2)
are substituted into Eq. (14.1). The equivalent relations in cylindrical coor-



